Log in

An alternative method for implementation of frequency-encoded logic gates using a terahertz optical asymmetric demultiplexer (TOAD)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

All-optical frequency-encoded AND, OR, and NOT logic gates are proposed and their performance simulated to confirm their feasibility. Terahertz optical asymmetric demultiplexer (TOAD)-based logic gates with a control pulse energy as low as 50 fJ are used, and real-time simulations of their input and output pulse patterns reveal a rate of 20 Gbps. Such logic gates could be used for future all-optical logic processors for optical computation and communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taleb, H., Abedi, K.: Ultrafast all-optical signal processing using optically pumped QDSOA-based Mach–Zehnder interferometers. IEEE J. Sel. Top. Quantum Electron. 19(5), 7600108 (2013)

    Article  Google Scholar 

  2. Belhadj, W., Saidani, N., Abdelmalek, F.: All optical logic gates based on coupled heterostructures waveguides in two dimensional photonic crystal. Optik 168, 237–243 (2018)

    Article  Google Scholar 

  3. Willner, A.E., Khaleghi, S., Chitgarah, M.R., Yilmaz, O.L.: All optical signal processing. J. Lightwave Technol. 32, 660 (2014)

    Article  Google Scholar 

  4. Dimitriadou, E., Zoiros, K.E.: All optical XOR gate using single quantum dot SOA and optical filter. J. Lightwave Technol. 31, 3813 (2013)

    Article  Google Scholar 

  5. Kowsari, A., Saghaei, H.: Resonantly enhanced all optical switching in microfiber Mach–Zehnder interferometers. Electron. Lett. 54(4), 229 (2018)

    Article  Google Scholar 

  6. Sasikala, V., Chitra, K.: All optical switching and associated technologies: a review. J. Opt. (2018). https://doi.org/10.1007/s12596-018-0452-3

    Article  Google Scholar 

  7. Kotb, A., Zoiros, K.E., Guo, C.: All optical XOR, NOR and NAND logic functions with parallel semiconductor optical amplifier based Mach–Zehnder interferometer modules. Opt. Laser Technol. 108, 426 (2018)

    Article  Google Scholar 

  8. Chattopadhyay, T.: All optical clocked delay flip flop using a single terahertz optical asymmetric demultiplexer based switch: a theoretical study. Appl. Opt. 49(28), 5226 (2010)

    Article  Google Scholar 

  9. Gayen, D.K., Chattopadhyay, T., Bhattacharya, A., Basak, S., Dey, D.: All optical half adder/half subtractor using tera hertz asymmetric demultiplexer. Appl. Opt. 53(36), 8400 (2014)

    Article  Google Scholar 

  10. Mondal, S., Samanta, S., Maity, G.K., Mukhopadhyay, S.: All optical reversible logic gate implementation using TOAD. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 14(12), 664–677 (2016)

    Google Scholar 

  11. Das, R., Bhattacharya, A., Biswal, L.: All optical implementation of universal shift-register using terahertz optical asymmetric de-multiplexer based optical devices. In: 2018 International Symposium on Devices, Circuits and Systems (ISDCS) (2018)

  12. Mukherjee, K.: Semiconductor optical amplifier based frequency encoded logic gates exploiting nonlinear polarization rotation only. J. Circuit Syst. Comput. 23(9), 1450130 (2014)

    Article  Google Scholar 

  13. Mukherjee, K.: Frequency encoded optical four bit adder/subtractor with control input using semiconductor optical amplifier. Optik 125(20), 6183 (2014)

    Article  Google Scholar 

  14. Mondal, D., Garai, S.K.: All optical logic unit (BLU) using frequency encoded data. Opt. Fiber Technol. 22, 56–67 (2015)

    Article  Google Scholar 

  15. Sarkar, P.P., Ghosh, B., Patra, S.N., Mukhopadhyay, S.: A new scheme of an all optical frequency encoded dibit based latch with its simulated result. J. Opt. Technol. 84(9), 631 (2017)

    Article  Google Scholar 

  16. Ghosh, B., Hazra, S., Haldar, N., Roy, D., Patra, S.N., Swarnakar, J., Sarkar, P.P., Mukhopadhyay, S.: A novel approach to realize of all optical frequency encoded dibit based XOR and XNOR logic gates using optical switches with simulated verification. Opt. Spectrosc. 124(3), 337 (2018)

    Article  Google Scholar 

  17. Mukherjee, K.: Terahertz optical asymmetric demultiplexer (TOAD) based frequency encoded all optical NOT gate. In: Proceedings of the International Conference on Laser, Materials, & Communication, pp 242–244, Burdwan, India, December 7 to 9, 2011, ISBN 983-93-80813-14-1

  18. Mukherjee, K.: Terahertz optical asymmetric demultiplexer (TOAD) based frequency encoded all optical logic gates. In: Proceedings of National Conference on Electronics, Communication and Signal Processing (NCECS 2012), 19th September 2012, p. 111

  19. Mukherjee, K., Raja, A.: Terahertz optical asymmetric demultiplexer (TOAD) based NAND gate. In: Proceedings of MDCCT, Burdwan (2018)

  20. Sokolof, J.P., Prucnal, P.R., Glesk, I., Kane, M.: A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photonics Technol. Lett. 5(7), 787–789 (1993)

    Article  Google Scholar 

  21. Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Designing of an all optical scheme for single input ternary logical operations. Optik 122(1), 33–36 (2011)

    Article  Google Scholar 

  22. Eiselt, M., Pieper, W., Weber, H.G.: SLALOM: semiconductor laser amplifier in a loop mirror. J. Lightwave Technol. 13(10), 2099–2112 (1995)

    Article  Google Scholar 

  23. Kang, K.I., Chang, T.G., Glesk, I., Prucnal, P.R.: Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semi-conductor resonant optical nonlinearity. Appl. Opt. 35(3), 417–426 (1996)

    Article  Google Scholar 

  24. Roy, J.N., Maity, G.K., Gayen, D., Chattopadhyay, T.: Terahertz optical asymmetric demultiplexer based tree-net architecture for all-optical conversion scheme from binary to its other 2n radix based form. Chin. Opt. Lett. 6(7), 536–540 (2008)

    Article  Google Scholar 

  25. Wang, H., Wu, J., Lin, J.: Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection. Opt. Commun. 256, 83–97 (2005)

    Article  Google Scholar 

  26. Barman, A.D., Fresi, F., Sengupta, I., Poti, L., Bogoni, A.: Cross talk mitigation by assist light in a TOAD demultiplexer. In: CODEC 09. IEEE (2009)

  27. Ghosh, B., Halder, N., Roy, D., Hazra, S., Mukherjee, S., Sarkar, P.P.: An alternative approach to realize all optical frequency encoded integrated AND-OR logic gate with control input using optical switches and its simulative verification. Int. J. Comput. Sci. Eng. 7(Special Issue 1), 88–93 (2019)

    Google Scholar 

  28. Mondal, D., Mondal, S., Garai, S.K.: A new approach of develo** all optical two bit binary data multiplier. Opt. Laser Technol. 64, 292–301 (2014)

    Article  Google Scholar 

  29. Sarkar, P.P., Ghosh, B., Patra, S.S.N.: Simulative study of all optical frequency encoded dibit based universal NAND and NOR logic gates using a reflective semiconductor optical amplifier and an add/drop multiplexer. Opt. Eng. 83(4), 257–262 (2016)

    Google Scholar 

  30. Sarkar, P.P., Hazra, S., Ghosh, B., Patra, S.N., Mukhopadhay, S.: Realization of all-optical frequency-encoded dibit-based OR and NOR logic gates with simulated verification. In: Proceedings of the International Conference on Advancement of Computer Communication and Electrical Technology (ACCET 2016), West Bengal, India, 21–22 October (2016). ISBN 9781138031579

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, K., Mukherjee, K. & Raja, A. An alternative method for implementation of frequency-encoded logic gates using a terahertz optical asymmetric demultiplexer (TOAD). J Comput Electron 18, 1423–1434 (2019). https://doi.org/10.1007/s10825-019-01393-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01393-5

Keywords

Navigation