Log in

Spin–orbit coupling effects on the electronic structure of two-dimensional silicon carbide

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Two-dimensional silicon carbide (2D-SiC) has attracted incredible research attention recently because of its wide bandgap and high exciton binding energy. Here, we focus on the effect of spin–orbit coupling (SOC) on its electronic structure through a detailed first-principles density functional theory study. The calculated electronic band structure and projected electron density of states indicate that Si 3p and C 2p electrons play a vital role in forming the electronic bandgap. The distribution of the real space charge density in the conduction and valence bands further confirms the electronic structure. It is found that inclusion of SOC causes splitting of both the valence and conduction bands. A wide SOC-induced bandgap of ~ 30 meV is observed in this novel material. Moreover, the effect of strain in modulating the bandgap and the SOC interaction is quantified. We find a linear reduction of both the normal and SOC-induced bandgap with increase of the biaxial tensile strain. Bandgap tuning based on such SOC effects may provide a pathway towards future optoelectronic and novel spintronic devices based on 2D-SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  3. Wang, S., Ren, C., Tian, H., Yu, J., Sun, M.: MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photo catalyst: a first-principles study. Phys. Chem. Chem. Phys. 20(19), 13394–13399 (2018)

    Article  Google Scholar 

  4. Vandenberghe, W.G., Fischetti, M.V.: Imperfect two-dimensional topological insulator field-effect transistors. Nat. Commun. 8, 14184 (2017)

    Article  Google Scholar 

  5. Sun, M., Chou, J.P., Shi, L., Gao, J., Hu, A., Tang, W., Zhang, G.: Few-layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS Omega 3, 5971–5979 (2018)

    Article  Google Scholar 

  6. Mao, H., Yin, Z.: Electronic structure and spin dynamics of ACo2As2 (A = Ba, Sr, Ca). Phys. Rev. B 98, 115128 (2018)

    Article  Google Scholar 

  7. Sun, M., Chou, J.P., Gao, J., Cheng, Y., Hu, A., Tang, W., Zhang, G.: Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular do**. ACS Omega 3, 8514–8520 (2018)

    Article  Google Scholar 

  8. Cui, Z., Wang, X., Li, E., Ding, Y., Sun, C., Sun, M.: Alkali-metal-adsorbed g-GaN monolayer: ultralow work functions and optical properties. Nanoscale Res. Lett. 13, 207 (2018)

    Article  Google Scholar 

  9. Wang, S., Ren, C., Li, Y., Tian, H., Lu, W., Sun, M.: Spin and valley filter across line defect in silicene. Appl. Phys. Exp. 11, 053004 (2018)

    Article  Google Scholar 

  10. Hsueh, H.C., Guo, G.Y., Louie, S.G.: Excitonic effects in the optical properties of a SiC sheet and nanotubes. Phys. Rev. B Condens. Mater. Phys. 84, 404–408 (2011)

    Google Scholar 

  11. Lin, X., Lin, S., Xu, Y., Hakro, A.A., Hasan, T., Zhang, B., Yu, B., Luo, J., Liad, E., Chena, H.: Ab initio study of electronic and optical behavior of two dimensional silicon carbide. J. Mater. Chem. C 1, 2131–2135 (2013)

    Article  Google Scholar 

  12. Fortin, E., Fafard, S., Mysyrowicz, A.: Exciton transport in Cu2O: evidence for excitonic superfluidity. Phys. Rev. Lett. 70, 3951–3952 (1993)

    Article  Google Scholar 

  13. Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012)

    Article  Google Scholar 

  14. Li, S., Sun, M., Chou, J.P., Wei, J., **ng, H., Hu, A.: First-principles calculation of electronic properties of SiC-based bilayer and trilayer heterostructures. Phys. Chem. Chem. Phys. 20, 24726–24734 (2018)

    Article  Google Scholar 

  15. Pens, G., Ciobanu, F., Frank, T., Krieger, M., Reshavon, S., Schmid, F., Weidner, M.: SiC material properties. Int. J. High Speed Electron. Syst. 15(4), 705–745 (2005)

    Article  Google Scholar 

  16. Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M.: Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor. J. Appl. Phys. 76(3), 1363–1398 (1994)

    Article  Google Scholar 

  17. Lin, S., Zhang, S., Li, X., Xu, W., Pi, X., Liu, X., Wang, E., Wu, H., Chen, H.: Quasi-two-dimensional SiC and SiC2: interaction of silicon and carbon at atomic thin lattice plane. J. Phys. Chem. C 119, 19772–19779 (2015)

    Article  Google Scholar 

  18. Elliott, R.J.: Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96(2), 266–279 (1954)

    Article  MATH  Google Scholar 

  19. Minaev, B.F., Knuts, S., Agren, H.: On the interpretation of the external heavy atom effect on singlet-triplet transitions. Chem. Phys. 181, 15–28 (1994)

    Article  Google Scholar 

  20. Weinberg, M., Staarmann, C., Ölschläger, C., Simonet, J., Sengstock, K.: Breaking inversion symmetry in a state-dependent honeycomb lattice: artificial graphene with tunable band gap. 2D Mater. 3, 024005 (2016)

    Article  Google Scholar 

  21. Chow, P.C., Liu, L.: Relativistic effects on the electronic band structure of compound semiconductors. Phys. Rev. 140, 1817–1826 (1965)

    Article  Google Scholar 

  22. Bernevig, B.A., Zhang, S.C.: Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006)

    Article  Google Scholar 

  23. Žutić, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)

    Article  Google Scholar 

  24. Singh, R.: Spin–orbit splitting in graphene, silicene and germanene: dependence on buckling. Int. J. Mod. Phys. B 32, 1850055 (2017)

    Article  Google Scholar 

  25. Yao, Y., Ye, F., Qi, X.L., Zhang, S.C., Fang, Z.: Spin–orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007)

    Article  Google Scholar 

  26. Liu, C.C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    Article  Google Scholar 

  27. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G., Cococcioni, M., Dabo, I.: Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  28. Vanderbilt, D.: Soft self-consistent pseudo-potentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7897 (1990)

    Article  Google Scholar 

  29. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5053 (1981)

    Article  Google Scholar 

  30. Baroni, S., Gironcoli, S.D., Corso, A.D., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–520 (2001)

    Article  Google Scholar 

  31. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. B 78, 29 (1950)

    Article  MATH  Google Scholar 

  32. Shi, Z., Zhang, Z., Kutana, A., Yakobson, B.I.: Predicting two dimensional silicon carbide monolayers. ACS Nano 9, 9802–9809 (2015)

    Article  Google Scholar 

  33. Susi, T., Skakalov, V., Mittelberger, A., Kotrusz, P., Hulman, M., Pennycook, T.J., Mangler, C., Kotakoski, J., Meyer, J.C.: Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Sci. Rep. 7, 4399 (2017)

    Article  Google Scholar 

  34. Lee, J., Tian, W.C., Wang, W.L., Yao, D.X.: Electronic structure and band gap engineering of two-dimensional octagon-nitrogene. Sci. Rep. 8, 1674 (2018)

    Article  Google Scholar 

  35. Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 1–11 (2011)

    Google Scholar 

  36. **ao, D., Liu, G.B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Article  Google Scholar 

  37. Winkler, R.: Spin orbit coupling effects in two dimensional electron and hole systems. STMP 91, 8 (2003)

    Google Scholar 

  38. Desai, S.B., Seol, G., Kang, J.S., Fang, H., Battaglia, C., Kapadia, R., Ager, J.W., Guo, J., Javey, A.: Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014)

    Article  Google Scholar 

  39. Jena, N., Dimple, Behere, S.D., Sarkar, A.D.: Strain induced optimization of nanoelectromechanical energy harvesting and nanopiezotronic response in MoS2 monolayer nanosheet. J. Phys. Chem. C 121(17), 9181–9190 (2017)

    Article  Google Scholar 

  40. Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., Lee, J.D.: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX 2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85(3), 033305 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Abu Farzan Mitul of the University of New Mexico, Albuquerque, NM 87131-0001, USA and Md. Soyaeb Hasan of Khulna University of Engineering and Technology for valuable discussions during the writing of this paper. This work was supported by the use of the services and facilities of the UGC-funded research project (grant CASR-45/17/06, 2017–2018) provided by the Committee for Advanced Studies and Research (CASR) at Khulna University of Engineering and Technology, Khulna, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Sherajul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Islam, M.S., Ferdous, N. et al. Spin–orbit coupling effects on the electronic structure of two-dimensional silicon carbide. J Comput Electron 18, 407–414 (2019). https://doi.org/10.1007/s10825-019-01326-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01326-2

Keywords

Navigation