Log in

Molecular characterization of the human ovulatory cascade—Lesson from the IVF/IVM model

  • Special IVM Issue
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Aims

Ovarian follicular development and ovulation in mammals is a complex and highly regulated process. Most advances in the understanding of the ovulatory process have come from animal models. However, translational research in humans is of crucial importance for improving fertility treatment and control.

Methods

IVM/IVF procedures allow us to obtain follicular fluid and granulosa cells (GC) from follicles in different developmental stages with and without hCG priming.

Results

Using the cells and fluids obtained in IVM/IVF procedures allowed us to characterize human ovulatory gene expression during antral folliculogenesis and ovulation, examine gene expression in luteinized and non-luteinized GC in vivo and in vitro and to use cumulus GC genes as biomarkers for oocyte and embryo maturity and competence.

Conclusion

Biological material obtained during IVM/IVF procedures is an important tool to study the human ovulatory cascade and can serve to improve IVM techniques and fertility treatment and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Richards JS, Russell DL, Robker RL, Dajee M, Alliston TN. Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol. 1998;145:47–54.

    Article  PubMed  CAS  Google Scholar 

  2. Robker RL, Russell DL, Yoshioka S, Sharma SC, Lydon JP, O’Malley BW, et al. Ovulation: a multi-gene, multi-step process. Steroids. 2000;65:559–70.

    Article  PubMed  CAS  Google Scholar 

  3. Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010;120:963–72.

    Article  PubMed  CAS  Google Scholar 

  4. Hunter P. The paradox of model organisms. The use of model organisms in research will continue despite their shortcomings. EMBO Rep. 2008;9:717–20.

    Article  PubMed  CAS  Google Scholar 

  5. Lemon R, Dunnett SB. Surveying the literature from animal experiments. BMJ. 2005;330:977–8.

    Article  PubMed  Google Scholar 

  6. Knight A. Systematic reviews of animal experiments demonstrate poor contributions toward human healthcare. Rev Recent Clin Trials. 2008;3:89–96.

    Article  PubMed  Google Scholar 

  7. Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13:289–312.

    Article  PubMed  CAS  Google Scholar 

  8. Lindeberg M, Carlstrom K, Ritvos O, Hovatta O. Gonadotrophin stimulation of non-luteinized granulosa cells increases steroid production and the expression of enzymes involved in estrogen and progesterone synthesis. Hum Reprod. 2007;22:401–6.

    Article  PubMed  CAS  Google Scholar 

  9. Negishi H, Ikeda C, Nagai Y, Satoh A, Kumasako Y, Makinoda S, et al. Regulation of amphiregulin, EGFR-like factor expression by hCG in cultured human granulosa cells. Acta Obstet Gynecol Scand. 2007;86:706–10.

    Article  PubMed  Google Scholar 

  10. Ben-Ami I, Armon L, Freimann S, Strassburger D, Ron-El R, Amsterdam A. EGF-like growth factors as LH mediators in the human corpus luteum. Hum Reprod. 2009;24:176–84.

    Article  PubMed  CAS  Google Scholar 

  11. Gershon E, Hourvitz A, Reikhav S, Maman E, Dekel N. Low expression of COX-2, reduced cumulus expansion, and impaired ovulation in SULT1E1-deficient mice. FASEB J. 2007;21:1893–901.

    Article  PubMed  CAS  Google Scholar 

  12. Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, et al. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324:938–41.

    Article  PubMed  CAS  Google Scholar 

  13. Fan HY, O’Connor A, Shitanaka M, Shimada M, Liu Z, Richards JS. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol. 2010;24:1529–42.

    Article  PubMed  CAS  Google Scholar 

  14. Hsieh M, Mulders SM, Friis RR, Dharmarajan A, Richards JS. Expression and localization of secreted frizzled-related protein-4 in the rodent ovary: evidence for selective up-regulation in luteinized granulosa cells. Endocrinology. 2003;144:4597–606.

    Article  PubMed  CAS  Google Scholar 

  15. Maman E, Yung Y, Cohen B, Konopnicki S, Dal Canto M, Fadini R et al (2011) Expression and regulation of sFRP family members in human granulosa cells. Mol Hum Reprod.

  16. Oron G, Fisch B, Ao A, Zhang XY, Farhi J, Ben-Haroush A, et al. Expression of growth-differentiating factor 9 and its type 1 receptor in human ovaries. Reprod Biomed Online. 2010;21:109–17.

    Article  PubMed  CAS  Google Scholar 

  17. Shi FT, Cheung AP, Klausen C, Huang HF, Leung PC. Growth differentiation factor 9 reverses activin A suppression of steroidogenic acute regulatory protein expression and progesterone production in human granulosa-lutein cells. J Clin Endocrinol Metab. 2010;95:E172–80.

    Article  PubMed  CAS  Google Scholar 

  18. Tsai EM, Chan TF, Chen YH, Hsu SC, Chuang CY, Lee JN. Mifepristone attenuates human chorionic gonadotropin-induced extracellular signal-regulated kinase 1/2 phosphorylation, cyclooxygenase-2, and prostaglandin E2 production in human granulosa luteal cells. Fertil Steril. 2008;89:1522–9.

    Article  PubMed  CAS  Google Scholar 

  19. Dunning KR, Lane M, Brown HM, Yeo C, Robker RL, Russell DL. Altered composition of the cumulus-oocyte complex matrix during in vitro maturation of oocytes. Hum Reprod. 2007;22:2842–50.

    Article  PubMed  CAS  Google Scholar 

  20. Haouzi D, Assou S, Mahmoud K, Hedon B, De Vos J, Dewailly D, et al. LH/hCGR gene expression in human cumulus cells is linked to the expression of the extracellular matrix modifying gene TNFAIP6 and to serum estradiol levels on day of hCG administration. Hum Reprod. 2009;24:2868–78.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X, Jafari N, Barnes RB, Confino E, Milad M, Kazer RR. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril. 2005;83 Suppl 1:1169–79.

    Article  PubMed  CAS  Google Scholar 

  22. Keck C, Rajabi Z, Pfeifer K, Bettendorf H, Brandstetter T, Breckwoldt M. Expression of interleukin-6 and interleukin-6 receptors in human granulosa lutein cells. Mol Hum Reprod. 1998;4:1071–6.

    Article  PubMed  CAS  Google Scholar 

  23. Ohta N, Saito H, Kuzumaki T, Takahashi T, Ito MM, Saito T, et al. Expression of CD44 in human cumulus and mural granulosa cells of individual patients in in-vitro fertilization programmes. Mol Hum Reprod. 1999;5:22–8.

    Article  PubMed  CAS  Google Scholar 

  24. Elizur SE, Lerner-Geva L, Levron J, Shulman A, Bider D, Dor J. Factors predicting IVF treatment outcome: a multivariate analysis of 5310 cycles. Reprod Biomed Online. 2005;10:645–9.

    Article  PubMed  Google Scholar 

  25. Hourvitz A, Lerner-Geva L, Elizur SE, Baum M, Levron J, David B, et al. Role of embryo quality in predicting early pregnancy loss following assisted reproductive technology. Reprod Biomed Online. 2006;13:504–9.

    Article  PubMed  Google Scholar 

  26. Fadini R, Dal Canto MB, Mignini Renzini M, Brambillasca F, Comi R, Fumagalli D, et al. Effect of different gonadotrophin priming on IVM of oocytes from women with normal ovaries: a prospective randomized study. Reprod Biomed Online. 2009;19:343–51.

    Article  PubMed  CAS  Google Scholar 

  27. Banwell KM, Thompson JG. In vitro maturation of Mammalian oocytes: outcomes and consequences. Semin Reprod Med. 2008;26:162–74.

    Article  PubMed  CAS  Google Scholar 

  28. Hourvitz A, Maman E, Dor J. Oocytes in-vitro maturation—a new technique for reproductive endocrinologist practitioners. Harefuah 2007;146:860–866, 909.

    Google Scholar 

  29. Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J Exp Med. 1935;62:665–75.

    Article  PubMed  CAS  Google Scholar 

  30. Russell JB, Knezevich KM, Fabian KF, Dickson JA. Unstimulated immature oocyte retrieval: early versus midfollicular endometrial priming. Fertil Steril. 1997;67:616–20.

    Article  PubMed  CAS  Google Scholar 

  31. Jurema MW, Nogueira D. In vitro maturation of human oocytes for assisted reproduction. Fertil Steril. 2006;86:1277–91.

    Article  PubMed  Google Scholar 

  32. Hourvitz A, Gershon E, Hennebold JD, Elizur S, Maman E, Brendle C, et al. Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library. J Endocrinol. 2006;188:531–48.

    Article  PubMed  CAS  Google Scholar 

  33. Yung Y, Maman E, Konopnicki S, Cohen B, Brengauz M, Lojkin I, et al. ADAMTS-1: a new human ovulatory gene and a cumulus marker for fertilization capacity. Mol Cell Endocrinol. 2010;328:104–8.

    Article  PubMed  CAS  Google Scholar 

  34. Breckwoldt M, Selvaraj N, Aharoni D, Barash A, Segal I, Insler V, et al. Expression of Ad4-BP/cytochrome P450 side chain cleavage enzyme and induction of cell death in long-term cultures of human granulosa cells. Mol Hum Reprod. 1996;2:391–400.

    Article  PubMed  CAS  Google Scholar 

  35. McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.

    Article  PubMed  CAS  Google Scholar 

  36. Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22:3069–77.

    Article  PubMed  CAS  Google Scholar 

  37. Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod. 2010;16:531–8.

    Article  PubMed  CAS  Google Scholar 

  38. Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil M. Yerushalmi.

Additional information

Capsule We show how biological material obtained during IVM/IVF procedures is used for translational research from animal models to the human ovulatory cascade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerushalmi, G.M., Maman, E., Yung, Y. et al. Molecular characterization of the human ovulatory cascade—Lesson from the IVF/IVM model. J Assist Reprod Genet 28, 509–515 (2011). https://doi.org/10.1007/s10815-011-9594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9594-9

Keywords

Navigation