Log in

Effect of Laser Fluence on the Characteristics of Graphene Nanosheets Produced by Pulsed Laser Ablation in Water

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of laser fluence on the characteristics of carbon nanostructures produced by pulsed laser ablation has been investigated. The beam of a Q-switched Nd:YAG laser of 1064 nm wavelength at 7 ns pulse width and different fluences was employed to irradiate the graphite target in distilled water. The X-ray diffraction pattern, transmission electron microscopy, field emission scanning electron microscopy, Raman spectrum, and linear absorption properties of carbon nanostructures were used to characterize the ablation products. Carbon nanoparticles beside the graphene nanosheets were observed due to variation of laser fluence. The results show that under our experimental condition with increasing laser fluence the amount of carbon nanoparticles in suspensions was increased while the amount of graphene nanosheets was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  4. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nature Phys., 2, 177–180 (2006).

    Article  ADS  Google Scholar 

  5. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B, 73, 125411 (2006) .

    Article  ADS  Google Scholar 

  6. P. R. Wallace, Phys. Rev., 71, 622 (1947).

    Article  ADS  Google Scholar 

  7. A. K. Geim and K. S. Novoselov, Nature Mater., 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  8. D. Dorranian, E. Solati, and L. Dejam, Appl. Phys. A, 109, 307–314 (2012).

    Article  ADS  Google Scholar 

  9. E. Solati, L. Dejam, and D. Dorranian, Opt. Laser Technol., 58, 26–32 (2014).

    Article  ADS  Google Scholar 

  10. E. Solati, M. Mashayekh, and D. Dorranian, Appl. Phys. A, 112, 689–694 (2013).

    Article  ADS  Google Scholar 

  11. E. Solati and D. Dorranian, J. Clust. Sci., 26, 727–742 (2015).

    Article  Google Scholar 

  12. A. Mehrani, D. Dorranian, and E. Solati, J. Clust. Sci., 26, 1743–1754 (2015).

    Article  Google Scholar 

  13. M. Moradi, E. Solati, S. Darvishi, and D. Dorranian, J. Clust. Sci., 27, 127–138 (2016).

    Article  Google Scholar 

  14. A. Zamiranvari, E. Solati, and D. Dorranian, Opt. Laser Technol., 97, 209–218 (2017).

    Article  ADS  Google Scholar 

  15. E. Solati and D. Dorranian, Bull. Mater. Sci., 39, 1677–1684 (2016).

    Article  Google Scholar 

  16. E. Solati and D. Dorranian, J. Appl. Spectrosc., 84, 490–497 (2017).

    Article  ADS  Google Scholar 

  17. S. Z. Mortazavi, P. Parvin, and A. Reyhani, Laser Phys. Lett., 9, 547–552 (2012).

    Article  ADS  Google Scholar 

  18. G. X. Chen, M. H. Hong, L. S. Tan, T. C. Chong, H. I. Elim, W. Z. Chen, and W. Ji, J. Phys.: Conf. Ser., 59, 289–292 (2007).

    ADS  Google Scholar 

  19. E. Solati and D. Dorranian, Appl. Phys. B, 122, 76–86 (2016).

    Article  ADS  Google Scholar 

  20. N. Tabatabaie and D. Dorranian, Appl. Phys. A, 122, 558 (2016).

    Article  ADS  Google Scholar 

  21. J. L. Chen and X. P. Yan, J. Mater. Chem., 20, 4328–4332 (2010).

    Article  Google Scholar 

  22. V. Kumar, V. Singh, S. Umrao, V. Parashar, Sh. Abraham, A. K. Singh, G. Nath, P. S. Saxena, and A. Srivastava, RSC Adv., 4, 21101–21107 (2014).

    Article  Google Scholar 

  23. F. Y. Ban, S. R. Majid, N. M. Huang, and H. N. Lim, Int. J. Electrochem. Sci., 7, 4345–4351 (2012).

    Google Scholar 

  24. B. Pan, J. **ao, J. Li, P. Liu, Ch. Wang, and G. Yang, Sci. Adv., 1, e1500857 (2015).

    Article  ADS  Google Scholar 

  25. R. M. Nikonova, M. A. Merzlyakova, V. I. Lad'yanov, and V. V. Aksenova, Inorg. Mater.: Appl. Res., 3, 44–47 (2012).

    Article  Google Scholar 

  26. A. C. Ferrari, Solid State Commun., 143, 47–57 (2007).

    Article  ADS  Google Scholar 

  27. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett., 7, 238–242 (2007).

    Article  ADS  Google Scholar 

  28. L. Shahriary and A. A. Athawale, Int. J. Renew. Energy Environ. Eng., 2, 58–63 (2014).

    Google Scholar 

  29. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, and A. Aksay, R. Car, Nano Lett., 8, 36–41 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 2, pp. 223–228, March–April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, S., Solati, E. & Dorranian, D. Effect of Laser Fluence on the Characteristics of Graphene Nanosheets Produced by Pulsed Laser Ablation in Water. J Appl Spectrosc 86, 238–243 (2019). https://doi.org/10.1007/s10812-019-00806-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00806-4

Keywords

Navigation