Log in

Determination of Cadmium in Gannan Navel Orange using Laser-Induced Breakdown Spectroscopy Coupled with Partial Least Squares Calibration Model

  • English-Language Articles
  • Published:
Journal of Applied Spectroscopy Aims and scope

Operational conditions have been previously optimized in our laboratory by using a pulse Nd:YAG laser at 1064 nm with a maximum energy of 200 mJ per pulse focused on the surface of an orange. The optimized delay time, repetition rate, and laser energy were 1.28 μs, 2 Hz, and 120 mJ, respectively. LIBS spectra of peels of 40 oranges were collected. For comparison purpose, the samples of orange peels were also digested using a wet acid-assisted procedure and further analyzed by atomic absorption spectroscopy (AAS). A partial least squares (PLS) model was obtained by using 30 calibration samples and 10 prediction samples. The correlation coefficient between the measurements with LIBS and AAS was 0.9096 and 0.991 for the calibration and prediction sets, respectively. This result demonstrated that most results of direct analysis of Cd in Gannan navel oranges by LIBS were in reasonable agreement with those obtained by AAS after wet acid decomposition. Such performance shows that LIBS is a powerful tool for direct analysis of heavy metals in agricultural products without complex sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dahui Chen, Bin Hu, Chaozhang Huang, Talanta, 78, No. 2, 491–497 (2009).

    Article  Google Scholar 

  2. N. Anthemidis, K.-I. G. Ioannou, Talanta, 79, No. 1, 86–91 (2009).

    Article  Google Scholar 

  3. E. Zeini Jahromi, A. Bidari, Analyt. Chim. Acta, 585, No. 2, 305–311 (2007).

    Article  Google Scholar 

  4. C. Pasquini, J. Cortez, J. Braz. Chem. Soc., 18, No. 3, 463–512 (2007).

    Article  Google Scholar 

  5. M. da Silva Gomes, D. Santos, Jr., L. C. Nunes, G. Gustinelli Arantes de Carvalho, F. de Oliveira Leme, 6. F. José Krug, Talanta , 85, No. 4, 1744–1750 (2011).

    Article  Google Scholar 

  6. S. Krizkova, P. Ryant, O. Krystofova, Sensors, 8, 445–463 (2008).

    Article  Google Scholar 

  7. L. C. Trevizan, D. Santos Jr., R. Elgul Samad, Spectrochim. Acta, B, 64, 369–377 (2009).

    Article  ADS  Google Scholar 

  8. L. C. Trevizan, D. Santos Jr., R. Elgul Samad, Spectrochim. Acta, B, 63, 1151–1158 (2008).

    Article  ADS  Google Scholar 

  9. L. Ponce, T. Flores, A. Arronte, A. Flores, AIP Conf. Proc., 992, 1268–1273 (2007).

    Article  ADS  Google Scholar 

  10. J. Kaiser, O. Samek, L. Reale, M. Liska, R. Malina, Microsc. Res. Tech., 70, 147–153 (2007).

    Article  Google Scholar 

  11. V. Juvé, R. Portelli, M. Boueri, Spectrochim. Acta, B, 63, 1047–1053 (2008).

    Article  ADS  Google Scholar 

  12. W. Lei, V. Motto-Ros, M. Boueri, Spectrochim. Acta, B, 64, 891–898 (2009).

    Article  ADS  Google Scholar 

  13. M. Galiová, J. Kaiser, Microsc. Res. Tech.., 7, No. 4, 845–852 (2011).

    Google Scholar 

  14. J. Kaiser, M. Galiová, K. Novotný, R. Červenka, Spectrochim. Acta, B, 64, 67–73 (2009).

    Article  ADS  Google Scholar 

  15. M. Musa Özcan, M. Harmankaya, Environ. Monit. Assess., 184, No. 1, 313–320 (2012).

    Article  Google Scholar 

  16. V. Kumar Singh, A. Kumar Rai, Lasers Med. Sci., 25, No. 6, 673–687 (2011).

    Article  Google Scholar 

  17. D. Marcos-Martinez, J. A. Ayala, Talanta, 84, 730–737 (2011).

    Article  Google Scholar 

  18. V. Lazic, A. Palucci, S. Jovicevic, M. Carpanese, Spectrochim. Acta, B, 66, No. 8, 644–655 (2011).

    Article  ADS  Google Scholar 

  19. L. C. Nunes, J. W. Batista Braga, J. Anal. At. Spectrom., 25, 1453–1460 (2010).

    Article  Google Scholar 

  20. Jie Feng, Zhe Wang, Logan West, Zheng Li, Anal. Bioanal. Chem., 400, No. 10, 3261–3271 (2011).

    Article  Google Scholar 

  21. J. W. Batista Braga, L. C. Trevizan, Spectrochim. Acta, B, 65, 66–74 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Mingyin or Liu Muhua.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 6, p. 964, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Mingyin, Y., **long, L. et al. Determination of Cadmium in Gannan Navel Orange using Laser-Induced Breakdown Spectroscopy Coupled with Partial Least Squares Calibration Model. J Appl Spectrosc 80, 957–961 (2014). https://doi.org/10.1007/s10812-014-9873-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9873-1

Keywords

Navigation