Log in

The validity of commercial LIBS for quantitative analysis of brass alloy — comparison of WDXRF and AAS

  • Published:
Journal of Applied Spectroscopy Aims and scope

Commercial low-cost laser induced breakdown spectroscopy (LIBS) has been successfully employed for the quantitative analysis of a Cu-based alloy using a Nd:YAG laser at 1064 nm. The main aim of the present investigation is to explore the benefits of a commercial low-cost LIBS setup. It was recognized that some trace elements such as Al and S could not be detected by LIBS even with a high-resolution spectrometer. The main difficulties in quantifying Cu as a basic component of a brass alloy are related to the self-absorption of Cu spectral lines, with the effect complicated at Cu concentrations higher than 65%. However, few Cu lines such as that at 330.795 nm would be helpful to use due to their lower susceptibility to self-absorption. LIBS, flame atomic absorption spectrometry (FAAS), and wavelength dispersive X-ray fluorescence (WDXRF) were compared for the detection of major and trace metals in the Cu-based alloy. In the case of WDXRF, the brass samples were identified by using a standardless quantitative analysis program depending on a fundamental parameter approach. The quantitative analysis results were acceptable for most of the major and minor elements of the brass sample. Therefore, commercial low cost LIBS would be useful for quantitative analysis of most elements in different types of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Aragon, V. Madurga, J. A. Aguilera, Appl. Surf. Sci., 197–198, 217–223 (2002).

    Article  Google Scholar 

  2. K. Song, D. Kim, H. Cha, Y. Kim, E. C. Jung, I. Choi, H-S. Yoo, S. Oh, Microchem. J., 76, 95–103 (2004).

    Article  Google Scholar 

  3. V.I. Mazhukin, V.V. Nossov, I. Smurov, Thin Solid Films, 453–454, 353–361 (2004).

    Article  Google Scholar 

  4. U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, Appl. Spectrosc., 56, 375–380 (2002).

    Article  ADS  Google Scholar 

  5. P. Fichet, P. Mauchien, J-F. Wagner, C. Moulin, Anal. Chim. Acta, 429, 269–278 (2001).

    Article  Google Scholar 

  6. M. Hana, M. M. Omar, Y. E. E-D. Gamal, Rad. Phys. Chem., 57, 11–20 (2000).

    Article  ADS  Google Scholar 

  7. J. S. Huang, C. B. Ke, K. C. Lin, Spectrochim. Acta, B, 59, 321–326 (2004).

    Article  ADS  Google Scholar 

  8. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta, B, 57, 339–353 (2002).

    Article  ADS  Google Scholar 

  9. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, A. Santagata, R. Teghil, Spectrochim. Acta, B, 63, 585–590 (2008).

    Article  ADS  Google Scholar 

  10. F. Colao, R. Fantoni, V. Lazic, L. Caneve, A. Giardini, V. Spizzichino, J. Anal. At. Spectrom., 19, 502–504 (2004).

    Article  Google Scholar 

  11. F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, Spectrochim. Acta, B, 57, 1219–1234 (2002).

    Article  ADS  Google Scholar 

  12. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, Spectrochim. Acta, B, 55, 1771–1785 (2000).

    Article  ADS  Google Scholar 

  13. O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, R. E. Russo, Spectrochim. Acta, B, 54, 1351–1365 (1999).

    Article  ADS  Google Scholar 

  14. L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, V. Lazic, Anal. Bioanal. Chem., 385, 272–280 (2006).

    Article  Google Scholar 

  15. L. Edwards, Ph.D Thesis, “Laser-induced Breakdown Spectroscopy for the Determination of Carbon in Soil,” University of Florida, Gainesville-FL, USA (2007)

  16. J. M. Andrade, G. Cristoforetti, G. Lorenzetti, S. Legnaioli, V. Palleschi, A.A. Shaltout, Spectrochim. Acta, B, 65, 658–663 (2010).

    Article  ADS  Google Scholar 

  17. A. A. Shaltout, N. Y. Mostafa, M. S. Abdel-Aal, H. A. Shaban, Eur. Phys. J.: Appl. Phys., 50, 11003–11010 (2010).

    Article  ADS  Google Scholar 

  18. A. A. Shaltout, M. Ibrahim, Can. J. Anal. Sci. Spectrosc., 52, 280–290 (2007).

    Google Scholar 

  19. A. A. Shaltout, Eur. Phys. J.: Appl. Phys., 37, 291–297 (2007).

    Article  ADS  Google Scholar 

  20. A. A. Shaltout, H. Ebel, R. Svagera, X-Ray Spectrom., 34, 52–56 (2006).

    Article  Google Scholar 

  21. H. Ebel, R. Svagera, M. F. Ebel, A. A. Shaltout, J. H. Hubbell, X-Ray Spectrom., 32, 442–451 (2003).

    Article  Google Scholar 

  22. A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, E. Tognoni, Spectrochim. Acta, B, 60, 1573–1579 (2005).

    Article  ADS  Google Scholar 

  23. F. Bredice, F.O. Borges, H. Sobral, M. Villagran-Muniz, H.O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, E. Tognoni, Spectrochim. Acta, B, 61, 1294–1303 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah A. Shaltout.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 78, No. 4, pp. 633–640, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaltout, A.A., Abdel-Aal, M.S. & Mostafa, N.Y. The validity of commercial LIBS for quantitative analysis of brass alloy — comparison of WDXRF and AAS. J Appl Spectrosc 78, 594–600 (2011). https://doi.org/10.1007/s10812-011-9503-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-011-9503-0

Keywords

Navigation