Log in

Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The objective of this work was to assess and compare the removal efficiency of paracetamol and salicylic acid from aqueous medium by a microalgae-based treatment, using either Chlorella vulgaris or Tetradesmus obliquus. Moreover, considering microalgae application in wastewater treatment, the influence of these pharmaceuticals in the algal nutrient removal capacity was evaluated. The removal of paracetamol by T. obliquus (>40 %) was larger than by C. vulgaris (>21 %) in batch culture, and this was also observed for salicylic acid (>93 % by T. obliquus and >25 % by C. vulgaris). Both strains removed nutrients (phosphate and nitrate) almost completely by the end of the batch culture, but T. obliquus showed the highest efficiency at the steady state conditions of the semicontinuous culture. In spite of this, under the flocculants here tested, the efficiency in the recovery of biomass was much higher for C. vulgaris. These results highlight the importance of strain selection in the application of microalgae for wastewater treatment and, particularly, for the removal of pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (2008) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association and Water Environment Federation, Washington D.C

    Google Scholar 

  • Arbib Z, Ruíz J, Álvarez-Díaz P, Garrido-Pérez C, Barragan J, Perales JA (2013) Photobiotreatment: influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliquus. Int J Phytoremediation 15:774–788

    Article  CAS  PubMed  Google Scholar 

  • Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106

    Article  CAS  PubMed  Google Scholar 

  • Cabanelas ITD, Ruíz J, Arbib Z, Chinalia FA, Garrido-Pérez C, Rogalla F, Nascimento IA, Perales JA (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen S, Fingas M, Kao C (2010) Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. J Hazard Mater 177:856–863

    Article  CAS  PubMed  Google Scholar 

  • Combarros R, Rosas I, Lavin A, Rendueles M, Diaz M (2014) Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water Air Soil Pollut 225:1858. doi:10.1007/s11270-013-1858-9

    Article  Google Scholar 

  • Danquah M, Gladman B, Moheimani N, Forde G (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151:73–78

    Article  CAS  Google Scholar 

  • de Wilt A, Butkovskyi A, Tuantet K, Leal LH, Fernandes TV, Langenhoff A, Zeeman G (2016) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92

    Article  PubMed  Google Scholar 

  • Doane T, Horwath W (2003) Spectrophotometric determination of nitrate with a single reagent. Anal Lett 36:2713–2722

    Article  CAS  Google Scholar 

  • Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2015) Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresour Technol 185:276–284

  • Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  PubMed  Google Scholar 

  • Gattullo C, Baehrs H, Steinberg C, Loffredo E (2012) Removal of bisphenol a by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506. d

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Serrano C, Morales-Amaral MM, Acién FG, Escudero R, Fernández-Sevilla JM, Molina-Grima E (2015) Utilization of secondary-treated wastewater for the production of freshwater microalgae. Appl Microbiol Biotechnol 99:6931–6944

    Article  PubMed  Google Scholar 

  • Granados M, Acién F, Gómez C, Fernandez-Sevilla JM, Molina Grima E (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

    Article  CAS  PubMed  Google Scholar 

  • Henderson R, Baker A, Parsons S, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42:3435–3445

    Article  CAS  PubMed  Google Scholar 

  • Henry TB, Black MC (2008) Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish. Arch Environ Contam Toxicol 54:325–330

    Article  CAS  PubMed  Google Scholar 

  • Hom-Díaz A, Llorca M, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P (2015) Microalgae cultivation on wastewater digestate: β-estradiol and 17 α-ethynylestradiol degradation and transformation products identification. J Environ Manag 155:106–113

    Article  Google Scholar 

  • Mann J, Myers J (1968) On pigments growth and photosynthesis of Phaeodactylum tricornutum. J Phycol 4:349–355

    Article  CAS  PubMed  Google Scholar 

  • Matamoros V, Uggetti E, Garcia J, Bayona J (2016) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 301:197–205

    Article  CAS  PubMed  Google Scholar 

  • McGinn P, Dickinson K, Bhatti S, Frigon JC, Guiot SR, O’Leary SJ (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

  • Muñoz I, López-Doval JC, Ricart M, Villagrasa M, Brix R, Geiszinger A, Ginebreda A, Guasch H, de Alda MJ, Romaní AM, Sabater S, Barceló D (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat River basin (Northeast Spain). Environ Toxicol Chem 28:2706–2714

    Article  PubMed  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp. 305–328

    Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sewage Ind Waste 29:437–457

  • Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22:349–355

    Article  CAS  Google Scholar 

  • Peng FQ, Ying GG, Yang B, Liu S, Lai HJ, Liu YS, Chen ZF, Zhou GJ (2014) Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification. Chemosphere 95:581–588

    Article  CAS  PubMed  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  PubMed  Google Scholar 

  • Prandini JM, da Silva MLB, Mezzari MP, Pirolli M, Michelon W, Soares HM (2016) Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresour Technol 202:67–75

    Article  CAS  PubMed  Google Scholar 

  • Salim S, Kosterink NR, Tchetkoua Wacka ND, Vermuë MH, Wijffels RH (2014) Mechanism behind autoflocculation of unicellular green micro algae Ettlia texensis. J Biotechnol 174:34–38

    Article  CAS  PubMed  Google Scholar 

  • Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Selesu NFL, de Oliveira TV, Corrêa DO, Miyawaki B, Mariano AB, Vargas JVC, Vieira RB (2016) Maximum microalgae biomass harvesting via flocculation in large scale photobioreactor cultivation. Can J Chem Eng 94:304–309

    Article  CAS  Google Scholar 

  • Ternes T, Joss A, Siegrist H (2004) Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Env Sci Technol 38:392A–399A

    Article  CAS  Google Scholar 

  • Vajda AM, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO (2008) Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Env Sci Technol 42:3407–3414

    Article  CAS  Google Scholar 

  • Verhulst P (1838) Notice sur la loi que la population suit dans son accroissement. In: Queletet A (ed) Correspondance Mathématique et Physique. Bruxelles, pp 113–121

  • Wang L, Xue C, Wang L, Zhao Q, Wei W, Sun Y (2016a) Strain improvement of Chlorella sp for phenol biodegradation by adaptive laboratory evolution. Bioresour Technol 205:264–268

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhao Y, Ge Z, Zhang H, Sun S (2016b) Selection of microalgae for simultaneous biogas upgrading and biogas slurry nutrient reduction under various photoperiods. J Chem Technol Biotechnol 91:1982–1989

    Article  CAS  Google Scholar 

  • **n L, Hu H, Ke G, Sun Y (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhang M, Lin K, Sun W, **ong B, Guo M, Cui X, Fu R (2012a) Eco-toxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ Toxicol Pharmacol 33:344–352

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Amendola P, Hewson JC, Sommerfeld M, Hu Q (2012b) Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresour Technol 116:477–484

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sun S, Hu C, Zhang H, Xu J, ** L (2015) Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths. Bioresour Technol 187:338–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank University of León for funding given to MICROTRAT (project AE429). Carla Escapa acknowledges the Spanish Ministry of Education, Culture and Sports for her PhD fellowship (FPU12/03073). Sergio Paniagua thanks the Spanish Ministry of Education, Culture and Sports for his PhD fellowship (FPU14/05846). Marta Otero acknowledges University of León for the extension of the RYC-2010-05634 contract from the Spanish Ministry of Economy and Competitiveness, State Secretariat for Research, Development and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Otero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escapa, C., Coimbra, R.N., Paniagua, S. et al. Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. J Appl Phycol 29, 1179–1193 (2017). https://doi.org/10.1007/s10811-016-1010-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1010-5

Keywords

Navigation