Log in

Growing Scenedesmus quadricauda in used culture media: is it viable?

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Large-scale cultures of freshwater microalgae species demand high volumes of water used for culture media preparation. The recycling of culture media may help decrease cultivation costs, use valuable nutrients that may still remain in the medium after use and make it a green production system. This work investigated the effects of using culture media up to three times to grow Scenedesmus quadricauda. After a first use, culture media were either supplemented with nitrogen (N) and phosphorus (P) or with all nutrients of the medium composition. The effects of used culture media on the algae were verified through chlorophyll a concentrations, number of cells per coenobium, population density, growth rates, and biochemical composition (lipid classes, proteins, and carbohydrates). Cells were harvested through centrifugation before each culture medium use. The results showed that all nutrients should be added to the used medium at each new inoculation; protein/carbohydrate ratios were the best indicator of cell physiological status (higher in controls and lower in used media), and hydrocarbons accounted for 20 % of total lipids in controls and were produced under healthy conditions in S. quadricauda. According to the present results, at least three culture medium uses may be performed without affecting biomass yield, and it may be as promising as fresh medium for general biomass applications, such as biofuels production, but we do not recommend its reuse for fine biomass applications. Even though cells grew well in recycled media with all nutrients added, they were not as healthy as the ones in the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackman RG (1989) Marine biogenic lipids, fats and oils. CRC Press Inc., USA

    Google Scholar 

  • AFNOR (1980) Association Française de Normalisation. Norme experimental T90-304. Essais de eaux. Determination de L’inhibition de Scenedesmus subspicatus par une substance

  • APHA (1995) Standard methods, 19th edn. American Public Health Association, Washington

    Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Berdalet JE, Latasa M, Estrada M (1994) Effects of nitrogen and phosphorus starvation on nucleic acid and protein content of Heterocapsa sp. J Plankton Res 16:303–331

    Article  CAS  Google Scholar 

  • Bhakuni DS, Rawat DS (2005) Bioactive marine natural products. Springer, New York and Anamaya Publisher, New Delhi

    Google Scholar 

  • Borowitzka MA (1999) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis Ltd, London, pp 387–409

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strat Glob Chang 18:13–25

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:243–254

    Article  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Burks RL, Jeppesen E, Lodge DM (2000) Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos 88:139–147

    Article  CAS  Google Scholar 

  • Chen Z, Gong Y, Fang X, Hu H (2012) Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 28:3219–3225

    Article  CAS  PubMed  Google Scholar 

  • Chia MA, Lombardi AT, Melão MGG, Parrish CC (2013) Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphorus concentrations. Aquat Toxicol 128–129:171–182

    Article  PubMed  Google Scholar 

  • Cranwell PA, Jaworski GHM, Bickley HM (1990) Hydrocarbons, sterols, esters and fatty acids in six freshwater chlorophytes. Phytochemistry 29:145–151

    Article  CAS  Google Scholar 

  • Devi MP, Subhash GV, Mohan SV (2012) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew Energy 43:276e283

    Google Scholar 

  • Fergola P, Cerasuolo M, Pollio A, Pinto G, Della Greca M (2007) Allelopathy and competition between Chorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model 208:205–214

    Article  Google Scholar 

  • Fernández FGA, González-López CV, Sevilla JMF, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586

    Article  Google Scholar 

  • Fogg GE (1983) The ecological significance of extracellular products of phytoplankton potosynthesis. Bot Mar 26:3–14

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  CAS  Google Scholar 

  • Ganf G, Stone S, Oliver R (1986) Use of protein to carbohydrate ratios to analyse for nutrient deficiency in phytoplankton. Aust J Mar Freshwat Res 37:183–197

    Article  Google Scholar 

  • Gardner R, Peters P, Peyton B, Cooksey KE (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23:1005–1016

    Article  CAS  Google Scholar 

  • Gelpi E, Schneider H, Mann J, Oró J (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9:603–612

    Article  CAS  Google Scholar 

  • Hardie LP, Balkwill DL, Stevens SE Jr (1983) Effects of iron starvation on the physiology of the cyanobacterium Agmenellum quadruplicatum. Appl Environ Microbiol 45:999–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Healey FP, Hendzel LL (1980) PhysioIogical indicators of nutrient deficiency in lake phytoplankton. Can J Fish Aquat Sci 37:442–453

    Article  CAS  Google Scholar 

  • Ho SH, Chen WM, Chang JS (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

  • Kilham S, Kreeger DA, Gouldern CE, Lynn SG (1997) Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshw Biol 38:591–596

    Article  CAS  Google Scholar 

  • Kim DG, La HJ, Ahn CY, Park YH, Oh HM (2011) Harvest of Scenedesmus sp with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour Technol 102:3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Yua Z, Song X, Cao X, Han X (2011) Responses of the growth and biochemical composition of Prorocentrum donghaiense to different nitrogen and phosphorus concentrations. J Exp Mar Biol Ecol 405:6–17

    Article  CAS  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

    Article  CAS  Google Scholar 

  • Liu D, Wong PTS, Dutka BJ (1973) Determination of carbohydrate in lake sediment by a modified phenol-sulfuric method. Water Res 7:741–746

    Article  CAS  Google Scholar 

  • Liu J, Yuan C, Hu G, Li F (2012) Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp 11–1 under nitrogen limitation. Appl Biochem Biotechnol 166:2127–2137

    Article  CAS  PubMed  Google Scholar 

  • Lombardi AT, Wangersky P (1991) Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar Ecol Prog Ser 77:39–47

    Article  CAS  Google Scholar 

  • Lombardi AT, Wangersky P (1995) Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia 306:1–6

    Article  CAS  Google Scholar 

  • Lombardi AT, Vieira AAH (1999) Lead- and copper-complexing extracellular ligands released by Kirchneriella aperta (Chlorococcales, Chlorophyta). Phycologia 38:283–288

    Article  Google Scholar 

  • Lombardi AT, Vieira AAH (2000) Copper complexation by Cyanophyta and Chlorophyta exudates. Phycologia 39:118–125

    Article  Google Scholar 

  • Lombardi AT, Hidalgo TMR, Vieira AAH, Sartori AL (2007) Toxicity of ionic copper to the freshwater microalga Scenedesmus acuminatus (Chlorophyceae, Chlorococcales). Phycologia 46:74–78

    Article  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mallick N (2012) Biodiesel production by the green microalga Scenedesmus obliquus in a recirculatory aquaculture system. Appl Environ Microbiol 78:5929–5934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S (2002) Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light harvesting complex accumulation. Plant Cell 14:673–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parrish CC (1999) Determination of total lipid, lipid classes and fatty acids in aquatic samples. In: Arts MT, Wainman BC (eds) Lipids in Freshwater Ecosystems. Springer, New York, pp 4–20

    Chapter  Google Scholar 

  • Pickett-Heaps JD (1975) Green algae. Sinauer Associates, Sunderland, p. 606

  • Poulet SA, Ianora A, Miralto A, Meijer L (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Prog Ser 111:79–86

    Article  Google Scholar 

  • Prabakaran P, Ravindran AD (2012) Scenedesmus as a potential source of biodiesel among selected microalgae. Curr Sci 102:616–620

    CAS  Google Scholar 

  • Rausch T (1981) The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia 78:237–251

    Article  CAS  Google Scholar 

  • Richmond A (ed) (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford

    Google Scholar 

  • Sharp JH (1977) Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnol Oceanogr 2:381–399

    Article  Google Scholar 

  • Shoaf WT, Lium BW (1976) Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol Oceanogr 21:926–928

    Article  CAS  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  PubMed  Google Scholar 

  • Tornabene TG (1976) Microbial formation of hydrocarbons. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon Press, Oxford, pp 281–291

    Google Scholar 

  • Ugwu CU, Aoiyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • UNFCC (1997) The Kyoto protocol to the convention on climate change. Climate Change Secretariat, Bonn

    Google Scholar 

  • Vasconcelos MTSD, Leal MFC (2008) Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum. Mar Environ Res 66:499–507

    Article  CAS  PubMed  Google Scholar 

  • Wagenen JV, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

  • Wright DC, Berg LR, Patterson GW (1980) Effect of cultural conditions on the sterols and fatty acids of green algae. Phytochemistry 19:783–785

    Article  CAS  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn AY, Oh HE (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  CAS  PubMed  Google Scholar 

  • Zhao YF, Yu ZM, Song XX, Cao XH (2009) Biochemical compositions of two dominant bloom-forming species isolated from the Yangtze River Estuary in response to different nutrient conditions. J Exp Mar Biol Ecol 368:30–36

    Article  CAS  Google Scholar 

  • Zhao G, Yu J, Jiang F, Zhang X, Tan T (2012) The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresour Technol 114:466–471

    Article  CAS  PubMed  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315

    Article  CAS  Google Scholar 

  • Zou N, Richmond A (1999) Efficient utilization of high photon irradiance for mass production of photoautotrophic micro-organisms. J Appl Phycol 11:123–127

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the the grants no. 2009/15511-5, 2010/18136-8, 2008/02078-9, and 2008/03487-0, São Paulo Research Foundation (FAPESP—Brazil). ATL is grateful to CNPq—Brazil (302837/2012-4). The authors also acknowledge two anonymous reviewers, who improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, G.S., Pinto, F.H.V., Melão, M.G.G. et al. Growing Scenedesmus quadricauda in used culture media: is it viable?. J Appl Phycol 27, 171–178 (2015). https://doi.org/10.1007/s10811-014-0320-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0320-8

Keywords

Navigation