Log in

Dark fermentative hydrogen production by the unicellular halotolerant cyanobacterium Aphanothece halophytica grown in seawater

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biohydrogen is an environmentally friendly alternative energy carrier that can be produced by a number of different microorganisms. The unicellular halotolerant cyanobacterium Aphanothece halophytica is one of the high potential H2 producers. Under dark fermentation, it is capable of producing H2 by the bidirectional hydrogenase activity via the catabolism of glycogen stored during photosynthesis. This work aimed to cultivate A. halophytica in natural seawater containing high salinity and minerals, with an addition of some essential nutrients, and to investigate effects of various nutritional and physical factors on its dark fermentative H2 production. A. halophytica was able to grow in natural seawater added with NaNO3. Cells grown in seawater supplemented with as little as 1.76 mM NaNO3 showed similar growth to those cultivated in normal BG11 supplemented with Turk Island salt solution. H2 production was the highest when incubating the cells in seawater without any supplementation of NaNO3. Under this condition, the highest rate of dark fermentative H2 production of 82.79 ± 3.47 nmol H2  mg-1 dry weight h−1 was found in cells incubated at 35 °C, pH 6 with the supplementation of 378 mmolC L−1 glucose, 0.25 M NaCl, and 0.4 μM Fe3+. Long-term H2 accumulation of 1,864 ± 81 nmol H2  mg−1 dry weight was observed after 8 days of dark incubation under anoxic condition, and the high yield of H2 was sustained at least up to 14 days, suggesting the possibility of utilizing natural seawater to grow A. halophytica for long-term production of H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahern KS, Ahern CR, Udy JW (2007) Nutrient additions generate prolific growth of Lyngbya majuscula (cyanobacteria) in field and bioassay experiments. Harmful Algae 6:134–151

    Article  CAS  Google Scholar 

  • Allahverdiyeva Y, Leino H, Saari L, Fewer DP, Shunmugam S, Sivonen K, Aro E-M (2010) Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrogen Energy 35:1117–1127

    Article  CAS  Google Scholar 

  • Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74:6102–6113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baebprasert W, Lindblad P, Incharoensakdi A (2010) Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Int J Hydrogen Energy 35:6611–6616

    Article  CAS  Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Article  CAS  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrieri D, Ananyev G, Garcia Costas AM, Bryant DA, Dismukes GC (2008) Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. Int J Hydrogen Energy 33:2014–2022

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Reberr PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ernst A, Kirschenlohr H, Diez J, Böger P (1984) Glycogen content and nitrogenase activity in Anabaena variabilis. Arch Microbiol 140:120–125

    Article  CAS  Google Scholar 

  • Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 29:623–629

    Google Scholar 

  • Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques, 1st edn. Elsevier, Amsterdam, pp 21–33

    Google Scholar 

  • Heyer H, Stal LJ, Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa isolated anaerobically in the dark. Arch Microbiol 151:558–564

    Article  CAS  Google Scholar 

  • Khetkorn W, Khanna N, Incharoensakdi A, Lindblad P (2013) Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production. Biofuels 4:535–561

    Article  CAS  Google Scholar 

  • Kumaraswamy GK, Guerra T, Qian X, Zhang S, Bryant DA, Dismukes GC (2013) Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD+-dependent GAPDH. Energ Environ Sci. doi:10.1039/c3ee42206b

    Google Scholar 

  • Kumazawa S, Mitsui A (1981) Characterization and optimization of hydrogen photoproduction by a saltwater blue-green alga, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. Int J Hydrogen Energy 6:339–348

    Article  CAS  Google Scholar 

  • Luo YH, Mitsui A (1994) Hydrogen production from organic substrates in an aerobic nitrogen-fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511. J Biotechnol Bioeng 44:1255–1260

    Article  CAS  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:5032–5038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prabaharan D, Subramanian G (1996) Oxygen-free hydrogen production by the marine cyanobacterium Phormidium valderianum BDU 20041. Bioresour Technol 57:111–116

    Article  CAS  Google Scholar 

  • Prabaharan D, Kumar DA, Uma L, Subramanian G (2010) Dark hydrogen production in nitrogen atmosphere—an approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041. Int J Hydrogen Energy 35:10725–10730

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Saha SK, Uma L, Subramanian G (2003) Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol Ecol 45:263–272

    Article  Google Scholar 

  • Taikhao S, Junyapoon S, Incharoensakdi A, Phunpruch S (2013) Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. J Appl Phycol 25:575–585

    Article  CAS  Google Scholar 

  • Takabe T, Incharoensakdi A, Arakawa K, Yokota S (1988) CO2 fixation rate and RuBisCO content increase in the halotolerant cyanobacterium, Aphanothece halophytica, grown in high salinities. Plant Physiol 88:1120–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Tindall DR, Yopp JH, Miller DM, Schmid WE (1978) Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. Phycologia 17:179–185

    Article  CAS  Google Scholar 

  • van der Oost J, Bulthuis BA, Feitz S, Krab K, Kraayenhof R (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152:415–419

    Article  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    Article  CAS  PubMed  Google Scholar 

  • Wyman M, Gregory RPF, Carr NG (1985) Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science 230:818–820

    Article  CAS  PubMed  Google Scholar 

  • Yopp JH, Tindall DR, Miller DM, Schmid WE (1978) Isolation, purification and evidence for a halophilic nature of the blue-green alga Aphanothece halophytica Frémy (Chroococcales). Phycol 17:172–178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by research grant from the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang and the Commission on Higher Education (CHE), Thailand (The university staff development consortium). S. Taikhao is also thankful to the Strategic Scholarships for Frontier Research Network for the Ph.D. program provided by CHE. A. Incharoensakdi thanks the CHE and the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University, for the National Research University Project grant (FW0659A), and the Chulalongkorn University Centenary Academic Development Project grant (RES560530052-FW), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aran Incharoensakdi or Saranya Phunpruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taikhao, S., Incharoensakdi, A. & Phunpruch, S. Dark fermentative hydrogen production by the unicellular halotolerant cyanobacterium Aphanothece halophytica grown in seawater. J Appl Phycol 27, 187–196 (2015). https://doi.org/10.1007/s10811-014-0292-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0292-8

Keywords

Navigation