Log in

Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)

  • Published:
International Applied Mechanics Aims and scope

Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. Aleksandrov, L. E. Bruker, A. M. Kurshin, and A. P. Prusakov, Design of Three-Layer Panels [in Russian], Oborongiz, Moscow (1960).

  2. S. A. Ambartsumyan, Theory of Anisotropic Shells [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  3. I. Ya. Amiro and V. A. Zarutskii, Theory of Ribbed Shells, Vol. 2 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

  4. I. I. Anik’ev, V. I. Gulyaev, G. M. Ivanchenko, P. Z. Lugovoi, et al., “On the effect of quasi-total internal reflection of elastic waves by the interfaces of elastic media,” PMTF, 41, 1, 21–27 (2000).

    Google Scholar 

  5. A. S. Vol’mir, Stability of Deformable Systems [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  6. K. G. Golovko, P. Z. Lugovoi and V. F. Meish, Dynamics of Inhomogeneous Shells under Non-Stationary Loading [in Russian], Kievskii Universitet, Kiev (2012).

    Google Scholar 

  7. K. G. Golovko, P. Z. Lugovoi, and Yu. N. Podilchuk, “On the effect of elastic foundation on propagation of harmonic waves in orthotropic cylindrical shell,” Mat. Met. Fiz.-Mekh. Polya, 50, 1, 98–106 (2007)

    MATH  Google Scholar 

  8. K. G. Golovko P. Z. Lugovoi, and V. F. Meish, “Wave processes in stiffened cylindrical shells on elastic foundation under impulsive loading,” Bulletin of NTUU (KPI), Ser. Girnitstvo, No. 14, P. 17–21 (2007).

  9. K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, “Solving dynamic problems for reinforced cylindrical shells on a Winkler foundation under impulsive loads,” Sist. Tekhnol., Vip.: Mat. Probl. Tekhn. Mekh., No. 4 (45), 3–7 (2006).

  10. V. A. Zarutskii and V. F. Sivak, “Experimental investigation of dynamics of shells (survey),” Int. Appl. Mech., 35, No. 3, 3–11 (1999).

    Article  Google Scholar 

  11. V. O. Kononenko, A. M. Nosachenko, and A. I. Telalov, Investigation of Vibrations of Fiberglass Shells [in Russian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  12. V. G. Kravets, P. Z. Lugovoi, and P. Ya. Prokopenko, “Effect of reinforcement and elastic foundation on oscillations of rectangular in plan planar ribbed cylindrical shells,” Bulletin of NTUU (KPI), Ser. Girnitstvo, No. 20, 20–26 (2011).

  13. V. D. Kubenko, P. Z. Lugovoi, and N. Ya. Prokopenko, “Influence of reinforcement on the natural frequencies of shallow cylindrical shells with rectangular planform on an elastic foundation,” Probl. Obchysl. Mekh. Mitsn., 16, 151–156 (2011).

    Google Scholar 

  14. L. A. Latanskaya, V. F. Meish, and V. A. Kairov, “Mathematical modeling of stress–strain state of three-layer spherical shells with piecewise-continuous filler under impulsive loading,” Probl. Obchysl. Mekh. Mitsn., No. 14, 216–223 (2010).

  15. L. A. Latanskaya and V. F. Meish, “Numerical solution of dynamical axisymmetric problems of the theory of ellipsoidal shells with piecewise-homogeneous filler,” Visn. Dnipropetr. Nats. Univ., Ser. Mekhanika, 2, No. 11, 110–116 (2007).

    Google Scholar 

  16. V. N. Loginov, Electric Measurement of Mechanical Quantities [in Russian], Energiya, Moscow (1976).

    Google Scholar 

  17. V. D. Lomtadze, Engineering Geology, Engineering Geodynamics [in Russian], Nedra, Leningrad (1977).

    Google Scholar 

  18. P. Z. Lugovoi, M. O. Lisyuk, M. I. Mikhailova, I. I. Akinfeev, and E. O. Sushchenko, “Effects of total internal reflection of explosive waves in a cylindrical shell with liquid,” Bulletin of NTUU (KPI), Ser. Girnitstvo, No. 12, 7–13 (2005).

  19. P. Z. Lugovoi, M. O. Lisyuk, M. I. Mikhailova, and I. I. Akinfeyev, “Theoretical and experimental investigation of waves propagation in orthotropic cylindrical shells,” Vest. Kremench. Gos. Politekhn. Univ., No. 5 (34), 105–106 (2005).

  20. P. Z. Lugovoi, V. F. Meish, and Yu. A. Meish, “Dynamical interaction of structurally orthotropic cylindrical shells with elastic foundation,” in: Mathematical Problems of Technical Mechanics [in Russian], No. 1(24), DDTU, Dneprodzerzhinsk (2014), pp. 8–13.

  21. P. Z. Lugovoi, V. F. Meish, and Yu. A. Meish, “Dynamical behavior of cylindrical and spherical shells in soil medium,” Vest. Nats. Transp. Univ., Part 2, NTU, Kiev, No. 19, 249–254 (2009).

  22. P. Z. Lugovoi, V. F. Meish, and Yu. A. Meish, “Numerical solution of nonlinear problems of the theory of stiffened cylindrical shells under non-stationary loading,” in: Proc. 2nd Int. Conf. on Mathematics in Modern Technical University [in Ukrainian], NTUU (KPI), Kiev (2013), pp. 52–55.

  23. P. Z. Lugovoi and V. F. Meish, “Wave processes in the spherical shell–soil medium system under impulsive loading,” Vest. Nats. Transp. Univ., Part 1, No. 15, 93–98 (2007).

  24. P. Z. Lugovoi, “Dynamics of shell structures under impulsive loading (survey),” Int. Appl. Mech., 26, No. 8, P. 3–20 (1990).

    Google Scholar 

  25. P. Z. Lugovoi, “Dynamics of thin-wall structures under non-stationary loading (survey),” Int. Appl. Mech., 37, No. 5, 44–74 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Z. Lugovoi and N. Ya. Prokopenko, “On dispersion curves for harmonic waves propagating along longitudinally reinforced cylindrical shells on elastic foundation,” in: Trans. Dneprodzerzhinsk State Technical University [in Ukrainian], No. 1(24), Dneprodzerzhinsk (2014), pp. 140–143.

  27. P. Z. Lugovoi, K. G. Golovko, and V. F. Meish, “Dynamical behavior of spherical shells on elastic foundation under impulsive loading,” Syst. Tekhnol., No. 4 (51), 9–13 (2007).

  28. P. Z. Lugovoi and V. F. Meish, “Numerical modeling of dynamical behavior and strength computation of multilayered shells under impulsive loading,” Probl. Prochn., No. 4, 86–96 (2000).

  29. P. Z. Lugovoi, V. F. Meish, and Yu. A. Meish, “Dynamical behavior of a cylindrical shell interacting with three-component soil medium of periodic structure,” in: Nonstationary Processes of Deformation, Caused by Fields of Different Nature [in Ukrainian], Inst. Prikl. Probl. Mekh. Mat. NANU, Lvov (2012), pp. 99–102.

  30. P. Z. Lugovoi, V. F. Meish, and Yu. A. Meish, “On solving axisymmetric problems of dynamics of stiffened conic shells on elastic foundation,” Probl. Vych. Mekh. Prochn. Konstr., No. 13, 142–148 (2009).

  31. P. Z. Lugovoi, V. F. Meish, and Yu. A. Meish, “Numerical solution of the problem of the dynamical interaction of inhomogeneous cylindrical shells with elastic soil medium,” Probl. Vych. Mekh. Prochn. Konstr., No. 23, 124–134 (2014).

  32. P. Z. Lugovoi, V. F. Meish, Yu. A. Meish, and G. M. Zabolotny, “Forced vibrations of five-layer cylindrical shells with longitudinal-transverse reinforcement under distributed loading,” in: Methods for Solving Applied Problems of Solid Mechanics [in Russian], No. 12, DNU, Dnepropetrovsk (2011), pp. 203–209.

  33. P. Z. Lugovoi, V. F. Meish, and E. A. Shtantsel’, Non-Stationary Dynamics of Inhomogeneous Shell Structures [in Russian], Kiev. Univ., Kiev (2005).

  34. P. Z. Lugovoi, V. P. Mukoid, and V. F. Meish, Dynamics of Shell Structures under Explosive Loads [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  35. P. Z. Lugovoi and N. Ya. Prokopenko, “Effect of elastic foundation on the natural frequencies of a ribbed cylindrical shell,” Probl. Vych. Mekh. Prochn. Konstr., No. 23, 135–146 (2014).

  36. P. Z. Lugovoi, N. Ya. Prokopenko, and K. G. Golovko, “Dispersion curves for harmonic waves propagating along longitudinally reinforced cylindrical shells on elastic foundations,” in: Mathematical Problems of Technical Mechanics [in Russian], No. 2 (22), DDTU, Dneprodzerzhinsk (2013), pp. 99–104.

  37. P. Z. Lugovoi, V. F. Sivak, K. G. Golovko, and N. I. Kritskaya, “Experimental investigation of the effect of continuum on the dynamical characteristics of a stiffened cylindrical shell under impulsive loading,” Probl. Vych. Mekh. Prochn. Konstr., No. 18, 120–125 (2012).

  38. V. M. Lyakhov, Waves in Soils and Porous Multicomponent Media [in Russian], Nedra, Moscow (1982).

    Google Scholar 

  39. V. M. Lyakhov, Fundamentals of Dynamics of Explosion in Soils and Liquid Media [in Russian], Nedra, Moscow (1974).

    Google Scholar 

  40. V. F. Meish and N. V. Kravchenko, “Application of difference schemes of approximation of Richardson type for solving dynamical problems of the theory of discretely reinforced multilayered cylindrical shells,” Bulletin of Kiev National University, Ser. Phys.&Math., No. 3, 115–121 (2004).

  41. V. F. Meish, “Wave processes in the system cylindrical shell – soil medium of periodic structure under impulsive loading,” Bulletin of NTUU (KPI), Ser. Girnitstvo, No. 27, 15–21 (2015).

  42. V. F. Meish, “Numerical solving of the problems of cylindrical wave propagation in soil media of periodic structure,” Bulletin of NTUU (KPI), Ser. Girnitstvo, No. 25, 9–16 (2014).

  43. V. F. Meish and N. V. Arnauta, “Forced Vibrations of five-layerd shells with discrete ribs under non-stationary loading,” issue 4 (57), Mathematical Problems of Technical Mechanics [in Russian], Dnepropetrovsk (2008), pp. 120–124.

  44. V. F. Meish and N. V. Arnauta, “Computation of axisymmetric vibrations of reinforced cylindrical shells under longitudinal boundary loading,” Probl. Vych. Mekh. Prochn. Konstr., No. 15, P. 89–96 (2010).

  45. V. F. Meish and N. V. Arnauta, “Computation of axisymmetric vibrations of three-layer cylindrical shells with discrete ribs under non-stationary loading,” Mathematical Problems of Technical Mechanics [in Russian], Dnepropetrovsk, No. 3 (62), 40–44 (2009).

  46. V. F. Meish and N. V. Arnauta, “Numerical algorithm for computation of axisymmetric vibrations of reinforced three-layer cylindrical shells using Richardson finite-difference approximations,” Probl. Vych. Mekh. Prochn. Konstr., No. 14, 246–253 (2010).

  47. V. F. Meish, N. V. Arnauta, and G. M. Zabolotnyi, “Forced vibrations of longitudinally stiffened multilayered cylindrical shells under nonstationary loading,” in: Methods for Solving Applied Problems of Solid Mechanics [in Russian], DNU, Dnepropetrovsk, No. 10 (2009), pp. 199–205.

  48. V. F. Meish and N. V. Kravchenko, “Forced vibrations of multilayered spherical shells with reinforced hole under non-stationary loading,” Teor. Prikl. Mekh., No. 37, 146–150 (2003).

  49. V. F. Meish and N. V. Kravchenko, “Computation of the stress-strain state of the multilayered shells with discrete inhomogeneities under non-stationary loading,” Bulletin of Kiev National University, Ser. Phys.&Math., No. 3, 210–216 (2002).

  50. V. F. Meish and N. V. Kravchenko, “Non-axisymmetric oscillations of inhomogeneous multilayered discretely reinforced cylindrical shells under non-stationary loading,” Int. Appl. Mech., 39, No. 9, 88–95 (2003).

    Article  Google Scholar 

  51. V. F. Meish and N. V. Kravchenko, “Application of difference approximations of Richardson type for solving dynamical problems of the theory of discretely reinforced multilayered cylindrical shells,” Bulletin of Kiev National University, Ser. Phys.&Math., No. 3, 115–121 (2004).

  52. V. F. Meish and L. A. Latanskaya, “Axisymmetric vibrations of three-layer cylindrical shells with piecewise-continuous filler under non-stationary loading,” Vest. Donetsk. Nats. Univ., Ser. A, Estest. Nauki, No. 1, 161–164 (2008).

  53. V. F. Meish, P. Z. Lugovoi, and V. M. Melnik, “Dynamical behavior of a conic shell of variable thickness on elastic foundation,” Probl. Vych. Mekh. Prochn. Konstr., No. 19, 219–225 (2012).

  54. V. F. Meish and Yu. A. Meish, “Mathematical modeling of wave processes in a cylindrical shell–two-layer soil system,” Bulletin of NTUU (KPI), Ser. Girnitstvo, No. 22, 3–8 (2012).

  55. V. F. Meish and Yu. A. Meish, “Statement and numerical algorithm for solving problems of forced vibrations in the theory of three-layer cylindrical shells with piecewise-homogeneous filler,” in: Mathematical Problems of Technical Mechanics [in Russian], No. 2(25), DDTU, Dneprodzerzhinsk (2003), pp. 21–26.

  56. V. F. Meish and Yu. A. Meish, “Numerical solution of problems of the forced vibrations of three-layer cylindrical shells with piecewise-homogeneous filler,” Vest. Nats. Transp. Univ., No. 8, 432–437 (2003).

  57. V. F. Meish, Yu. A. Meish, and E. A. Shtantsel’, “Dynamical behavior of three-layered beams within applied theories under nonstationary loading,” Mathematical Problems of Technical Mechanics [in Russian], No. 4 (51), DDTU, Dneprodzerzhinsk (2007), pp. 27–34.

  58. V. F. Meish, V. F. Mukoid, and E. A. Shtantsel’, “Comparative analysis of dynamical behavior of three-layer cylindrical shells with inhomogeneous filler within the framework of applied theories,” Bulletin of Kiev National University, Ser. Phys.&Math., No. 3, 163–168 (2000).

  59. V. F. Meish, V. K. Stryuk, and L. V. Kot, “Non-stationary behavior of the three-layered discretely reinforced shells of revolution under longitudinal impulsive loading,” Bulletin of Kiev National University, ser. Phys.&Math., No. 3, 171–175 (1999).

  60. V. F. Meish, Yu. A., Khamrenko and A. P. Mukoid, “Dynamical behavior of three-layer ellipsoidal shell of revolution under axisymmetric non-stationary loading, Bulletin of Kiev National University, Ser. Phys.&Math., No. 3, 71–76 (1998).

  61. V. F. Meish, Yu. A. Khamrenko, and N. A. Shulga, “Non-stationary vibrations of cylindrical shells under axisymmetric loading,” Int. Appl. Mech., 35, No. 8, 3–9 (1999).

    MATH  Google Scholar 

  62. V. F. Meish and S. E. Shtantsel’, “Non-axisymmetric vibrations of three-layer shells with inhomogeneous filler under dynamical loading,” Bulletin of Kiev National University, Ser. Phys.&Math., No. 5, 342–347 (2001).

  63. V. F. Meish and S. E. Shtantsel’, “Construction of numerical algorithm for solving dynamical problems of theory of three-layer shells with inhomogeneous filler,” Mathematical Problems of Technical Mechanics [in Russian], No. 2 (13), DDTU, Dneprodzerzhinsk (2001), pp. 97–102.

  64. V. F. Meish, N. A. Shul’ga, and Yu. A. Khamrenko, “On the theory of non-stationary axisymmetric vibrations of three-layer shells of revolution,” Dop. NAN Ukrainy, No. 9, 69–73 (1999).

  65. I. A. Luchko, V. A. Plaksii, N. S. Remez, et al., Mechanical Effect of an Explosion in Soil [in Russian], Naukova Dumka, Kyiv (1989).

  66. E. S. Osternik, “Experimental investigations of deformations of the normal and the method of implementing boundary conditions for layered plates,” in: Proc. 8th All-Union Conf. on the Theory of Plates and Shells [in Russian], Nauka, Moscow (1973), pp. 596–602.

  67. A. V. Perel’muter and V. I. Slivker, Computational Models of Buildings and Potentials of Their Analysis [in Russian], Stal’, Kiev (2000).

    Google Scholar 

  68. S. A. Rumyantsev, Dynamics of Transient Processes and Self-Synchronization of Motions of Vibration Machines [in Russian], UrO RAN, Ekaterinburg (2003).

    Google Scholar 

  69. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  70. C. A. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 2, Springer-Verlag, Berlin (1988).

    Book  MATH  Google Scholar 

  71. A. N. Guz, V. A. Zarutskii, I. Ya. Amiro, et al., Experimental Investigations of Thin-Wall Structures [in Russian], Naukova Dumka, Kiev (1984).

  72. H. Altenbach, “An alternative determination of transverse shear stiffnesses for sandwich and laminated plates” Int. J. Solids Struct. 37, 3503–3520 (2000).

    Article  MATH  Google Scholar 

  73. H. Altenbach, “Theories for laminated and sandwich plates:Areview,” Mech. Comp. Mater., 34, No. 3, 243–252 (1998).

    Article  Google Scholar 

  74. E. Carrera, “Historical review of zig-zag theories for multilayered plates and shells,” Appl. Mech. Rev., 56, No. 3, 287–309 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  75. E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” J. Arch. Comput. Meth. Eng., 9, No. 2, 87–140 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  76. E. Carrera, “Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells,” Appl. Mech. Rev., 54, 301–329 (2001).

    Article  ADS  Google Scholar 

  77. E. Carrera, “On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells,” Comp. Struct., 82, 541–554 (2004).

    Article  Google Scholar 

  78. K. Cichocki, “Effects of underwater blast loading on structures with protective elements,” Int. J. Impact Eng., 22, No. 6, 609–617 (1999).

    Article  Google Scholar 

  79. Ö. Civalec, Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations,” Int. J. Press. Vess. Pi**, 113, 1–9 (2014).

    Article  Google Scholar 

  80. B. Collet and J. Pouget, “Nonlinear modulation of wave packets in a shallow shell on an elastic foundation,” Wave Motion, 34 (1), 112–118 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  81. K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, “Solution of axisymmetric dynamic problems for cylindrical shells on an elastic foundation,” Int. Appl. Mech., 43, No. 12, 1390–1395 (2007).

    Article  ADS  Google Scholar 

  82. Ya. M. Grigorenko, A. Ya. Grigorenko, and G. G. Vlaikov, Problems of Mechanics for Anisotropic Inhomogeneous Shells on the Basis of Different Models, S.P. Timoshenko Institute of Mechanics, Technical center of the National Academy of Science of Ukraine, Kiev (2009).

  83. K. Guler and Z. Celep, “Static and dynamic responses of a rigid circular plate on a tensionless Winkler foundation,” J. Sound Vibr., 276, No. 1–2, 449–458 (2004).

    ADS  Google Scholar 

  84. V. I. Gulyaev, P. Z. Lugovoi, and N. A. Lysyuk, “Propagation of harmonic waves in a cylindrical shell (Timoshenko model),” Int. Appl. Mech., 39, No. 4, 472–478 (2003).

    Article  ADS  MATH  Google Scholar 

  85. A. P. Gupta and N. Bfardwaj, “Vibration of rectangular orthotropic elliptic plates on quadratically varying thickness on elastic foundation,” J. Vibr. Acoust., 126, No. 1, 132–140 (2004).

    Article  Google Scholar 

  86. Hiroyuki Matsunaga, “Vibration and stability of thick plates on elastic foundation,” J. Eng. Mech., 126, No. 1, 27–34 (2000).

    Article  MathSciNet  Google Scholar 

  87. Yi. Huang and He Fang-she, “Free vibrations of shallow spherical shells on elastic foundation,” Chin. J. Geotechn. Eng., 16, No. 5, 36–46 (1994).

    Google Scholar 

  88. Hui-Shen Shen, “Large deflection of Reissner–Mindlin plates on elastic foundations,” J. Eng. Mech., 124, No, 10, 1080–1089 (1998).

    Article  MathSciNet  Google Scholar 

  89. Hui-Shen Shen, “Postbuckling of orthotropic plates on two-parameter elastic foundation,” J. Eng. Mech., 121, No. 1, 50–56 (1995).

    Article  Google Scholar 

  90. Kadir Guller, “Circular elastic plate resting on tensionless Pasternak foundation,” J. Eng. Mech., 130, No. 10, 1251–1254 (2004).

    Article  Google Scholar 

  91. N. Kambouchev, L. Noels, and R. Rodovitzky, “Numerical simulation of the fluid–structure interaction between air blast waves and free – standing plates,” Comp. Struct., 85, 923–931 (2007).

    Article  Google Scholar 

  92. A. A. Khathan, “Large-deformation analysis of plates on unilateral elastic foundation,” J. Eng. Mech., 120, No. 8, 1820–1827 (1994).

    Article  Google Scholar 

  93. V. D. Kubenko and P. S. Kovalchuk, “Stability and nonlinear vibrations of closed shells of cylindrical shape interacting with flowing fluid,” Int. Appl. Mech., 51, No. 1, 19–79 (2015).

    Article  Google Scholar 

  94. P. Z. Lugovo, I. Yu. Podil’chuk, and V. F. Sivak, “Experimental study of the behavior of a cylindrical shell under impulsive loading with ambient humidity taken into account,” Int. Appl. Mech., 46, No. 4, 418–421 (2010).

    Article  ADS  Google Scholar 

  95. P. Z. Lugovo and N. Ya. Prokopenko, “Vibrations of ribbed shallow rectangular shells on an elastic foundation,” Int. Appl. Mech., 46, No. 8, 912–918 (2010).

    Article  Google Scholar 

  96. P. Z. Lugovoi and N. Ya. Prokopenko, “Influence of reinforcement and elastic foundation on the vibrations of shallow shells with rectangular planform,” Int. Appl. Mech., 47, No. 6, 714–719 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. P. Z. Lugovoi, V. F. Meish, and K. G. Golovko, “Solving axisymmetric dynamic problems for reinforced shells of revolution on an elastic foundation,” Int. Appl. Mech., 45, No. 2, 193–199 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  98. P. Z. Lugovoi, V. V. Sivak, and V. F. Sivak, “Experimental research of the vibrations of a cylindrical shell filled with some medium and subjected to impulsive loading,” Int. Appl. Mech., 45, No. 11, 1232–1235 (2009).

    Article  ADS  MATH  Google Scholar 

  99. P. Z. Lugovoi, V. V. Sivak, and V. F. Sivak, “Stress distribution in a glassfiber-reinforced plastic shell structure under impulsive transverse loading,” Int. Appl. Mech., 45, No. 4, 443–447 (2009).

    Article  ADS  MATH  Google Scholar 

  100. P. Z. Lugovoi and N. Ya. Prokopenko, “Influence of an elastic foundation on the dispersion of harmonic waves in longitudinally reinforced cylindrical shells,” Int. Appl. Mech., 51, No. 5, 583–590 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. P. Z. Lugovoi, V. F. Meish, and S. E. Shtantsel’, “Forced nonstationary vibrations of a sandwich cylindrical shell with cross-ribbed core,” Int. Appl. Mech., 2005, 41, No. 2, 161–167 (2005).

  102. P. Z. Lugovoj, “Propagation of harmonic waves in an orthotropic cylindrical shells on elastic foundation,” Int. Appl. Mech., 40, No. 3, 297–303 (2004).

    Article  ADS  Google Scholar 

  103. F. Marconi, “Investigation of the interaction of a blast wave with an internal structure,” AIAA J., 32, No. 8, 1561–1567 (1994).

    Article  ADS  Google Scholar 

  104. V. F. Meish and Yu. A. Khamrenko, “Comparative analysis of the dynamic responses of transiently loaded sandwich shells predicted by various applied theories,” Int. Appl. Mech., 39, No. 7, 856–861 (2003).

    Article  ADS  Google Scholar 

  105. V. F. Meish and N. V. Kravchenko, “Nonaxisymmetric vibrations of discretely reinforced inhomogeneous multilayer cylindrical shells under nonstationary loads,” Int. Appl. Mech., 39, No. 9, 1066–1072 (2003).

    Article  ADS  Google Scholar 

  106. V. F. Meish and A. M. Mikhlyak, “Forced vibrations of three-layer elliptic cylindrical shells under distributed loads,” Int. Appl. Mech., 46, No. 2, 195–200 (2010).

    Article  ADS  MATH  Google Scholar 

  107. I. Mirsky and G. Herrmann, “Nonaxially symmetric motions of cylindrical shells,” J. Acoust. Soc. Amer., 28, No. 2, 277–203 (1973).

    Google Scholar 

  108. Moon-Hee Nam and Kwan-Hee Lee, “Unsymmetrically loaded cylindrical tank on elastic foundation,” J. Eng. Mech., 126, No. 12, 1257–1261 (2000).

    Article  Google Scholar 

  109. Nam-H. Kim, C. Fu, Chung, and Moon-Young Kim, “Exact solutions for free vibration analysis of non-symmetric curved beam on two-types of elastic foundation,” J. Eng. Mech., 126, No. 1, 71–77 (2000).

  110. A. K. Noor and W. S. Burton, “Assessment of computational models for multilayered composite shells,” Appl. Mech. Rev., 43, No. 4, 67–97 (1990).

    Article  ADS  Google Scholar 

  111. A. K. Noor, W. S. Burton, and C. W. Bert, “Computational models for sandwich panels and shells,” Appl. Mech. Rev., 49, No. 3, 155–200 (1996).

    Article  ADS  Google Scholar 

  112. A. K. Noor, W. S. Burton, and J. M. Peters, “Assessment of computation models for multilayered composite cylinders,” Int. J. Solids Struct., 27, No. 10, 1269–1286 (1991).

    Article  Google Scholar 

  113. A. K. Noor and W. S. Burton, “Assessment of shear deformation theories for multi-layered composite plates,” Appl. Mech. Rev., 42 (1), 1–13 (1989).

    Article  ADS  Google Scholar 

  114. N. J. Pagano, “Free edge stress fields in composite laminates,” Int. J. Solids Struct., 14, 401–406 (1978).

    Article  MATH  Google Scholar 

  115. N. J. Pagano, “Exact solutions for composite laminates in cylindrical bending,” J. Comp. Mater., 3, 389–411 (1969).

    Google Scholar 

  116. N. J. Pagano, “Exact solutions for rectangular bidirectional composites and sandwich plates,” J. Comp. Mater., 4, 20–34 (1970).

    Article  Google Scholar 

  117. D. N. Paliwal and Singh Satyendra, “Free vibrations of orthotropic cylindrical shell on elastic foundation,” AIAA J., 37, No. 9, 1135–1139 (1999).

    Article  ADS  Google Scholar 

  118. M. S. Qatu, “Accurate theory for laminated composite deep thick shells, Int. J. Solids Struct., 36, No. 19, 2917–2941 (1999).

    Article  MATH  Google Scholar 

  119. M. S. Qatu, “Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated Composite Shells,” Appl. Mech. Rev., 55, No. 4, 325–350 (2002).

    Article  ADS  Google Scholar 

  120. M. S. Qatu, Vibration of Laminated Shells and Plates, Elsevier, Amsterdam (2004).

    MATH  Google Scholar 

  121. M. S. Qatu R. W. Sullivan, and W. Wang, “Recent research advances in the dynamic behavior of composite shells: 2000–2009,” Comp. Struct., 93, No. 1, 14–31 (2010).

    Article  Google Scholar 

  122. M. S. Qatu, “Free vibration of laminated composite rectangular plates,” Int. J. Solids Struct., 28, No. 8, 941–954 (1991).

    Article  Google Scholar 

  123. Qui **, Wang **n-zhi, and Yeh Kai-yuah, “Bifurcation and chaos of the circular plates on the nonlinear elastic foundation,” Appl. Math. Mech., 24, No. 8, 880–885 (2003).

    Article  Google Scholar 

  124. J. N. Reddy and R. A. Arciniega, “Shear deformation plate and shell theories: From Stavsky to present,” Mech. Adv. Mater. Struct., 11, 535–582 (2004).

    Article  Google Scholar 

  125. J. N. Reddy, and C. F. Liu, “A higher-order shear deformation theory of laminated elastic shells,” Int. J. Eng. Sci., 23, 669–683 (1985).

    Article  MATH  Google Scholar 

  126. J. N. Reddy, “On refined computational models of composite laminates,” Int. J. Numer. Meth. Eng., 27, 361–382 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  127. J. N. Reddy, “A simple higher order theory for laminated composite plates,” J. Appl. Mech., 51, 745–752 (1984).

    Article  ADS  MATH  Google Scholar 

  128. T. A. Rose, P. D. Smith, and G. S. Mays, “Effectiveness of walls designed for the protection of structures against air blast from high explosives,” in: Proc. of the Institution of Civil Engineers: Structures and Buildings, 110, No. 1, 78–85 (1995).

  129. S. Saicit Tamero lu, “Vibrations of clamped rectangular plates on elastic foundation subjected to uniform compressive forces,” J. Eng. Mech., 122, No. 8, 714–718 (1996).

  130. H. Y. Sheng and J.Q. Ye, “A three-dimensional state space finite element solution for laminated composite cylindrical shells,” Comp. Meth. Appl. Mech. Eng., 192, No. 22–24, 2441–2459 (2003).

    Article  MATH  Google Scholar 

  131. X. P. Shi, “Rectangular thick plate with free edges on Pasternac foundation,” J. Eng. Mech., 120, No. 5, 971–988 (1994).

    Article  Google Scholar 

  132. N. A. Shulga and V. F. Meish, “Forced vibration of three-layered spherical and ellipsoidal shells under axially symmetric loads,” Mech. Comp. Mater., 39, No. 5, 625–636 (2003).

    Google Scholar 

  133. Yu. V. Skosarenko, “Natural vibrations of ribbed cylindrical shell interaction with elastic foundation,” Int. Appl. Mech., 50, No. 5, 111–128 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  134. Yu. V. Skosarenko, “Stress–strain state of ribbed cylindrical shell interaction with elastic foundation under shot-time loads,” Int. Appl. Mech., 51, No. 1, 112–122 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  135. K. P. Soldatos, “Mechanics of cylindrical shells with non-circular cross section,” Appl. Mech. Rev., 49, No. 8, 237–274 (1999).

    Article  ADS  Google Scholar 

  136. K. P. Soldatos, “A refined laminated plate and shell theory with applications,” J. Sound Vibr., 144, No. 3, 109–129 (2000).

    ADS  Google Scholar 

  137. S. P. Timoshenko, D. X. Young, and Weaver, Jr., Vibration Problems in Engineering, John Wiley and Sons, New York (1974).

  138. H. S. Turkmen, “Structural response of laminated composite shells subjected to blast loading: comparison of experimental and theoretical methods,” J. Sound Vibr., 249, No. 4, 663–678 (2002).

    Article  ADS  Google Scholar 

  139. X. Wang and Z. Zhong, “Three-dimensional solution of smart laminated anisotropic circular cylindrical shells with imperfect bonding,” Int. J. Solids Struct., 40, No. 22, 5901–5921 (2003).

    Article  MATH  Google Scholar 

  140. C. P.Wuand J. Y. Lo, “Three-dimensional elasticity solutions of laminated annular spherical shells,” J. Eng. Mech., 126, No. 8, 882–885 (2000).

    Article  Google Scholar 

  141. V. A. Zarutskii and N. Ya. Prokopenko, “Influence of discrete longitudinal ribs on harmonic waves in cylindrical shells,” Int. Appl. Mech., 39, No. 4, 457–469 (2003).

    Article  ADS  Google Scholar 

  142. V. A. Zarutskii and N. Ya. Prokopenko, “Vibrations and stability of shallow ribbed shells with a rectangular planform,” Int. Appl. Mech., 38, No. 6, 335–340 (2002).

    Article  Google Scholar 

  143. V. A. Zarutskii, P. Z. Lugovoi, and V. F. Ìåish, “Dynamic problems and stress strain state of inhomogeneous shell structures under stationary and nonstationary loads,” Int. Appl. Mech., 45, No. 3, 245–272 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Z. Lugovoi.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 5, pp. 3–65, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugovoi, P.Z., Meish, V.F. Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey). Int Appl Mech 53, 481–537 (2017). https://doi.org/10.1007/s10778-017-0833-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-017-0833-3

Keywords

Navigation