Log in

Determining the parameters of the fractional exponential heredity kernels of linear viscoelastic materials

  • Published:
International Applied Mechanics Aims and scope

The parameters of the fractional exponential creep and relaxation kernels of linear viscoelastic materials are determined. Methods that approximate the kernel by using the Mittag-Leffler function, the Laplace-Carson transform, and direct approximation of the creep function by the original equation are analyzed. The parameters of fractional exponential kernels are determined for aramid fibers, parapolyamide fibers, glass-reinforced plastic, and polymer concrete. It is shown that the kernel parameters calculated through the direct approximation of the creep function provide the best agreement between theory and experiment. The methods are experimentally validated for constant-stress and variable-stress loading in the modes of additional loading and complete unloading

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Van Fo Fy and V. I. Ozerov, “Viscoelastic deformation of some thermoset polymers,” Prikl. Mekh., 1, No. 8, 100–105 (1965).

    Google Scholar 

  2. D. A. Gavrilov and V. N. Potsaev, “A method to determine the creep parameters of viscoelastic materials,” Prikl. Mekh., 18, No. 5, 125–127 (1982).

    Google Scholar 

  3. A. Ya. Gol'dman, Strength of Structural Plastics [in Russian], Mashinostroenie, Leningrad (1979).

    Google Scholar 

  4. A. Ya. Gol'dman, V. V. Shcherbak, E. N. Kislov, and E. I. Dvorskii, “A method to determine the parameters for describing the creep curve of viscoelastic materials based on a table of Rabotnov's Эα-function,” Mashinovedenie, No. 6, 77–82 (1977).

  5. I. I. Demidova and V. S. Ekel'chik, “Describing the rheology of polymers using a sum of fractional exponential functions,” Issled. Upr. Plast., 12, 107–113 (1978).

    Google Scholar 

  6. E. N. Zvonov, N. I. Malinin, L. Kh. Papernik, and B. M. Tseitlin, “Computing the creep characteristics of linear viscoelastic materials,” Izv. AN SSSR, MTT, No. 5, 76–82 (1968).

  7. A. A. Kaminsky and G. V. Gavrilov, Fracture Mechanics of Polymers [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

  8. M. A. Koltunov, Creep and Relaxation [in Russian], Vysshaya Shkola, Moscow (1976).

    Google Scholar 

  9. R. M. Christensen, Theory of Viscoelasticity: An Introduction, Academic Press, New York (1971).

    Google Scholar 

  10. R. D. Maksimov, L. Jirgens, J. Jansons, and E. Plume, “Mechanical properties of polyester polymer-concrete,” Mech. Comp. Mater., 35, No. 2, 99–110 (1999).

    Article  Google Scholar 

  11. R. D. Maksimov and E. Plume, “Long-term creep of hybrid aramid/glass-fiber-reinforced plastics,” Mech. Comp. Mater., 37, No, 4, 271–280 (2001).

    Article  Google Scholar 

  12. L. Kh. Papernik, Applying Fractional Exponential Functions in the Linear and Nonlinear Theory of Viscoelasticity [in Russian], Author's Abstract of PhD Thesis, Moscow (1971).

  13. Yu. N. Rabotnov, Creep of Structural Members [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  14. Yu. N. Rabotnov, “Equilibrium of an elastic medium with aftereffect,” Prikl. Mat. Mekh., 12, No. 1, 53–62 (1948).

    MATH  MathSciNet  Google Scholar 

  15. Yu. N. Rabotnov, Elements of the Hereditary Mechanics of Solids [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  16. Yu. N. Rabotnov, A. Kh. Papernik, and E. N. Zvonov, Tables of a Fractional Exponential Function of Negative Parameters and Its Integral [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  17. Yu. N. Rabotnov, A. Kh. Papernik, and E. I. Stepanychev, “Nonlinear creep of TS8/3-250 glass-reinforced plastic,” Mekh. Comp. Mater., 7, No. 3, 351–356 (1971).

    Google Scholar 

  18. M. I. Rozovskii, “Some features of elastic media with memory,” Izv. AN SSSR, No. 2, 30–36 (1961).

  19. E. A. Sokolov and R. D. Maksimov, “Possibilities of predicting the creep of a polymeric fiber-reinforced plastic from the properties of the components,” Mekh. Comp. Mater., No. 6, 907–813 (1978).

    Google Scholar 

  20. T. D. Shermergor, “Describing the hereditary properties of materials based on a superposition of Э-operators,” in: Mechanics of Deformable Bodies and Structures [in Russian], Nauka, Moscow (1975), pp. 528–532.

    Google Scholar 

  21. M. E. Babeshko and Yu. N. Shevchenko, “Axisymmetric thermoelastoplastic stress-strain state of flexible laminated transversely isotropic shells,” Int. Appl. Mech., 42, No. 12, 1380–1388 (2006).

    Article  Google Scholar 

  22. V. P. Golub, Yu. M. Kobzar', and P. V. Fernati, “Calculating the linear creep strains of viscoelastic fibers under tension,” Int. Appl. Mech., 41, No. 5, 543–551 (2005).

    Article  Google Scholar 

  23. V. P. Golub, Yu. M. Kobzar', and P. V. Fernati, “Nonlinear creep of unidirectional fibrous composites tensioned along the reinforcement,” Int. Appl. Mech., 43, No. 5, 491–503 (2007).

    Article  Google Scholar 

  24. A. A. Kaminsky and M. F. Selivanov, “On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity,” Int. Appl. Mech., 42, No. 1, 115–126 (2006).

    Article  MathSciNet  Google Scholar 

  25. Yu. I. Lelyukh and Yu. N. Shevchenko, “On finite-element solution of spatial thermoviscoelastic problems,” Int. Appl. Mech., 42, No. 5, 507–515 (2006).

    Article  Google Scholar 

  26. J. J. More, B. S. Garbow, and K. E. Hillstrom, Users Guide to Minipack, Publication ANL-80-74, Argone National Laboratory (1980).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika, Vol. 44, No. 9, pp. 12–25, September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golub, V.P., Fernati, P.V. & Lyashenko, Y.G. Determining the parameters of the fractional exponential heredity kernels of linear viscoelastic materials. Int Appl Mech 44, 963–974 (2008). https://doi.org/10.1007/s10778-009-0121-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-009-0121-y

Keywords

Navigation