Log in

Optimal low-thrust orbital transfers in a central gravity field

  • Published:
International Applied Mechanics Aims and scope

Abstract

The results of studying some problems of optimization of low-thrust transfers between arbitrary elliptic orbits in a Newtonian gravity field are expounded. An approximate solution obtained by the averaging method is presented. Analytical solutions of the averaged equations are given for a wide class of maneuvers. The problem of constructing numerical solutions to the exact equations of motion of a spacecraft between high orbits is discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Akulenko, Asymptotic Methods in Optimal Control [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. R. Z. Akhmetshin, “Plane problem of optimal low-thrust transfer from a high elliptic orbit to a geostationary orbit,” Kosm. Issled., 42, No. 3, 248–259 (2004).

    Google Scholar 

  3. V. V. Beletskii, Essays on Motion of Heavenly Bodies [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  4. N. N. Bogolyubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1962).

    Google Scholar 

  5. I. Yu. Vasil’ev, B. N. Kiforenko, and Z. V. Pasechnik, “Averaging the equations of optimal constant-and variable-thrust motion in a strong Newtonian gravity field,” Probl. Upravl. Inform., No. 5, 162–176 (2005).

  6. I. Yu. Vasil’ev, B. N. Kiforenko, and Z. V. Pasechnik, “Comparing the performance of constant-and variable-thrust engines in multirevolution orbital transfers,” Probl. Upravl. Inform., No. 6, 62–73 (2005).

  7. F. R. Gantmakher and L. M. Levin, Theory of Flight of Unguided Missiles [in Russian], Gos. Izd. Fiz.-Mat. Lit., Moscow (1959).

    Google Scholar 

  8. G. L. Grodzovskii, B. N. Kiforenko, and V. V. Tokarev, “Energy storage in the optimization of power-limited motion,” Izv AN SSSR, Mekh., No. 3, 40–48 (1965).

  9. G. L. Grodzovskii, Yu. N. Ivanov, and V. V. Tokarev, “Low-thrust flight mechanics,” Inzh. Zh. AN SSSR, 4, No. 2, 392–423 (1964).

    Google Scholar 

  10. G. L. Grodzovskii, Yu. N. Ivanov, and V. V. Tokarev, Low-Thrust Flight Mechanics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  11. G. L. Grodzovskii, Yu. N. Ivanov, and V. V. Tokarev, Space Flight Mechanics: Optimization Problems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  12. G. N. Duboshin, Celestial Mechanics: Basic Problems and Methods [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  13. S. A. Ishkov, “Design of optimal low transverse thrust transfers to an elliptic orbit,” Kosm. Issled., 35, No. 2, 178–188 (1997).

    Google Scholar 

  14. B. N. Kiforenko, “On singular control in the mechanics of power-limited stored-energy flight,” Kosm. Issled., 9, No. 4, 536–540 (1971).

    Google Scholar 

  15. B. N. Kiforenko, Z. V. Pasechnik, and I. Yu. Vasil’ev, “Using equinoctial orbital elements as variables in the minimum-time problem for an orbital constant-thrust transfer in a strong gravity field,” Probl. Upravl. Inform., No. 4, 102–114 (2003).

  16. B. N. Kiforenko and Ya. V. Tkachenko, “Some optimal, nearly elliptical maneuvers of spacecraft with a constant-power propulsion unit and energy storage device,” Probl. Upravl. Inform., No. 1, 84–100 (2003).

  17. B. N. Kiforenko, “Toward the selection of optimal parameters of a power-limited propulsion system with an energy storage device,” Inzh. Zh. Mekh. Tverd. Tela, No. 3, 53–58 (1966).

  18. B. N. Kiforenko, “Some problems of optimization of motion with limited power and energy storage,” Inzh. Zh. Mekh. Tverd. Tela, No. 4, 3–8 (1967).

  19. B. N. Kiforenko, “Motion along nearly circular orbits using constant-power propulsion systems with energy storage,” Inzh. Zh. Mekh. Tverd. Tela, No. 3, 152–157 (1967).

  20. B. N. Kiforenko, Z. V. Pasechnik, and I. Yu. Vasil’ev, “Analytic solutions of the averaged equations of optimal constant-thrust orbital transfer in a strong gravity field,” Probl. Upravl. Inform., No. 4, 126–139 (2002).

  21. B. N. Kiforenko, Z. V. Pasechnik, and I. Yu. Vasil’ev, “Averaging the equations of motion in the minimum-time problem for a constant-thrust orbital transfer in a strong gravity field,” Probl. Upravl. Inform., No. 11, 72–86 (2001).

  22. B. N. Kiforenko, S. V. Vasilenko, and Z. V. Pasechnik, “The problem of solving the equations of motion of a low-thrust spacecraft along nearly optimal trajectories obtained by averaging,” Probl. Upravl. Inform., No. 6, 88–100 (2003).

  23. B. N. Kiforenko and S. V. Vasilenko, “Optimization of the motion of large spacecraft,” Visn. Kyiv. Nats. Univ. im. T. Shevchenka, Ser. Kibern., 3, 24–26 (2002).

    Google Scholar 

  24. W. R. Corliss, Propulsion Systems for Space Flight, McGraw-Hill, New York (1960).

    Google Scholar 

  25. V. F. Krotov and V. I. Gurman, Methods and Problems of Optimal Control [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  26. V. N. Lebedev, Low-Thrust Spacecraft Motion Calculations [in Russian], VTs AN SSSR, Moscow (1968).

    Google Scholar 

  27. V. G. Petukhov, “Optimization of multirevolution transfers between noncoplanar elliptic orbits,” Kosm. Issl., 42, No. 3, 260–279 (2004).

    Google Scholar 

  28. V. V. Salmin, Optimization of Low-Thrust Transfers [in Russian], Mashinostroenie, Moscow (1987).

    Google Scholar 

  29. Ya. V. Tkachenko, “Designing a quasioptimal controller for a spacecraft in a nonspherical gravity field,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauky, 4, 237–244 (2002).

    MATH  Google Scholar 

  30. Ya. V. Tkachenko, “Energy storage for low-thrust orbital transfers,” in: Mechanics of Gyroscopic Systems [in Ukrainian], Issue 17–18, MNDI PM “Ritm,” Kiev (2002), pp. 243–252.

    Google Scholar 

  31. Ya. V. Tkachenko, “Optimal quasi-circular motion of a spacecraft with an energy storage device,” Int. Appl. Mech., 35, No. 10, 1059–1067 (1999).

    MATH  Google Scholar 

  32. R. P. Fedorenko, Approximate Solution of Optimal-Control Problems [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  33. K. É. Tsiolkovsky, Collected Works [in Russian], Vol. 2, Izd. AN SSSR, Moscow (1954).

    Google Scholar 

  34. T. M. Éneev, R. Z. Akhmetshin, G. B. Efimov, M. S. Konstantinov, and G. G. Fedotov, “Ballistic analysis of interplanetary transfers of spacecraft with electric jet engines,” Mat. Model., 12, No. 5, 33–38 (2000).

    Google Scholar 

  35. S. Alfanto and J. D. Thorne, “Circle-to-circle constant-thrust orbit raising,” J. Astron. Sci., 42, No. 1, 35–45 (1994).

    Google Scholar 

  36. E. Avila, “ELITE program overview,” AIAA Pap., 1559, 1–11 (1992).

    Google Scholar 

  37. R. L. Burton, “Electric propulsion,” Aerosp. Amer., 36, No. 12, 62–63 (1998).

    Google Scholar 

  38. J. Capulli, R. Myers, I. Murray, C. Lurie, E. Johnson, and G. R. William, “Iridium battery cell pulse mode characterization,” in: Proc. 27th Intersoc. Energy Convers. Eng. Conf. (IECEC) on Technology for Energy Efficiency in the 21st Century (San Diego, California, 1992), 1, Warrendale (Pa) (1992), pp. 511–519.

    Google Scholar 

  39. E. Choneiri, “Electric propulsion,” Aerosp. Amer., 37, No. 12, 68–69 (1999).

    Google Scholar 

  40. E. Y. Choueiri, A. J. Kelly, and R. G. Jahn, “Mass saving domain of plasma propulsion for LEO to GEO transfer,” J. Spacecraft and Rockets, 30, No. 6, 749–754 (1993).

    Google Scholar 

  41. F. Diaz and R. Chang, “The VASIMR rocket,” Sci. Amer., 283, No. 5, 72–79 (2000).

    Google Scholar 

  42. T. N. Edelbaum, “Propulsion requirements for controllable satellites,” ARS J., 31, No. 8, 1079–1089 (1961).

    Google Scholar 

  43. T. N. Edelbaum, “Optimum low-thrust rendezvous and station-kee**,” AIAA J., No. 2, 1196–1201 (1964).

    Google Scholar 

  44. T. N. Edelbaum, “Optimum power-limited orbit transfer in strong gravity fields,” AIAA J., No. 3, 921–925 (1965).

    Google Scholar 

  45. T. N. Edelbaum, “An asymptotic solution for optimum power-limited orbit transfer,” AIAA J., No. 4, 1491–1494 (1966).

    Google Scholar 

  46. T. N. Edelbaum, “Optimum thrust-limited orbit transfer in strong gravity fields,” Lecture Notes in Math., 132, 70–78 (1970).

    MATH  Google Scholar 

  47. T. N. Edelbaum, L. L. Sackett, and H. L. Malchow, “Optimal low thrust geocentric transfer,” in: AIAA 10th Electric Propulsion Conf. (Lake Tahoe, Nevada, November 1973), Paper 73-1074 (1973), p. 19.

  48. Ch. Ferrier and R. Epenoy, “Optimal control for engines with electro-ionic propulsion under constraint of eclipse,” Acta Astronautica, 48, No. 4, 181–192 (2001).

    Article  ADS  Google Scholar 

  49. T. Furniss, “Ion cruiser,” Flight Int., 154, No. 4651, 48 (1998).

    Google Scholar 

  50. M. Guelman, A. Kogan, and A. Gipsman, “Asymptotic optimization of very long, low thrust propelled inter-orbital maneuvers,” Acta Astronautica, 47, No. 2–9, 489–502 (2000).

    ADS  Google Scholar 

  51. A. L. Herman, “A new era in space propulsion,” Launchspace, 3, No. 1, 28–29 (1998).

    Google Scholar 

  52. S. D. House and C. A. Hill, “Status of the Air Force nickel-hydrogen low earth orbit life test,” IEEE Aerosp. Electron. Syst. Mag., 8, No. 12, 14–17 (1993).

    Article  Google Scholar 

  53. R. M. Jones, “Comparison of potential electric propulsion systems for orbit transfer,” J. Spacecraft and Rockets, 21, No. 1, 88–95 (1984).

    ADS  Google Scholar 

  54. J. A. Kechichian, “Orbit raising with low-thrust tangential acceleration in presence of earth shadow,” J. Spacecraft and Rockets, 35, No. 4, 516–525 (1998).

    Google Scholar 

  55. J. A. Kechichian, “Low thrust trajectory optimization based on epoch eccentric longitude formulation,” J. Spacecraft and Rockets, 36, No. 4, 543–553 (1999).

    Google Scholar 

  56. W. R. Kerslake and L. R. Ignaczac, “Development and flight history of the SEPT II spacecraft,” J. Spacecraft and Rockets, 30, No. 3, 258–290 (1993).

    ADS  Google Scholar 

  57. B. N. Kiforenko, “Some modeling and optimization problems in space flight mechanics,” Int. Appl. Mech., 40, No. 1, 30–50 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  58. B. N. Kiforenko, Z. V. Pasechnik, and A. V. Tishchenko, “Exact solution for low-thrust orbital transfer,” in: Proc. 3rd European Control Conf., Rome, Italy (1995), pp. 3521–3525.

  59. B. N. Kiforenko, Z. V. Pasechnik, I. Yu. Vasiliev, J. Riehl, and L. Balkany, “Minimum time transfer of a constant low thrust rocket between elliptic orbits in strong Newtonian gravity fields,” in: Proc. AAS/AIAA Astrodynamics Specialist Conf. (San Valley, Idaho, USA, August 4–7, 1997), Paper AAS97-716 (1997), p. 30.

  60. B. N. Kiforenko, Z. V. Pasechnik, S. B. Kyrychenko, and I. Yu. Vasiliev, “Minimum time transfers of a low thrust rocket in strong gravity fields,” Acta Astronautica, 52, No. 8, 601–611 (2003).

    Article  ADS  Google Scholar 

  61. G. A. Landis, M. Stavnes, S. Oleson, and J. Bozek, “Space transfer with ground-based laser/electric propulsion,” AIAA Pap., 3213, 1–12 (1992).

    Google Scholar 

  62. M. A. Manzo, “Modified NASA standard nickel-cadmium cell designs,” in: Proc. 27th Intersoc. Energy Convers. Eng. Conf. (IECEC) on Technology for Energy Efficiency in the 21st Century (San Diego, California, 1992), 2, Warrendale (Pa) (1992), pp. 105–110.

    Google Scholar 

  63. J.-P. Marec and N. X. Vihn, “Optimal low-thrust limited power transfers between arbitrary elliptical orbits,” Acta Astronautica, No. 6, 511–540 (1977).

    Google Scholar 

  64. C. Marshal, “Optimal transfers between elliptical orbits,” in: Proc. 16th Astronautic Int. Congr. (Athens, September 12–18, 1965), No. 269, Publication ONERA (1965), p. 43.

  65. C. Marshal, J.-P. Marec, and C. B. Winn, “Synthesis of the analytical results on optimal transfers between Keplerian orbits,” in: Proc. 18th Astronautic Int. Congr. (Belgrade, September 25–29, 1967), No. 515, Publication ONERA (1967), p. 35.

  66. Yu. A. Martynyuk-Chernienko and V. I. Slyn’ko, “Synthesizing controls for an uncertain system with a conditionally invariant set,” Int. Appl. Mech., 39, No. 11, 1343–1353 (2003).

    Article  MathSciNet  Google Scholar 

  67. K. S. Matviichuk, “Technical stability of nonstationary automatic-control systems with variable structure,” Int. Appl. Mech., 39, No. 3, 356–367 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  68. J. E. Mondt, “Multimission NEP system for outer planet exploration,” AIAA Pap., 698, 1–10 (1981).

    Google Scholar 

  69. D. Paugan, J. Verniolle, and T. Jamin, “Space qualification test result on SAFT nickel hydrogen cells,” in: Proc. 27th Intersoc. Energy Convers. Eng. Conf. (IECEC) on Technology for Energy Efficiency in the 21st Century (San Diego, California, 1992), 1, Warrendale (Pa) (1992), pp. 141–146.

    Google Scholar 

  70. C. M. Petty, “Interplanetary maneuvers, using radial thrust,” J. Amer. Rock. Soc., 31, No. 9, 1233–1236 (1961).

    Google Scholar 

  71. C. Poher, “European electronuclear OTV for the end of the 1990s,” Acta Astronautica, 10, No. 10, 703–707 (1983).

    Article  Google Scholar 

  72. F. Porte, A. P. Saint, and C. Buthion, “Benefits of electric propulsion for orbit injection of communication spacecraft,” AIAA Pap., 3202, 1–9 (1992).

    Google Scholar 

  73. M. D. Rayman, P. A. Chadburne, J. S. Culwell, and S. N. Williams, “Mission design for deep space 1: A low-thrust technology validation mission,” Acta Astronautica, 45, No. 4–9, 381–388 (1999).

    ADS  Google Scholar 

  74. S. Ross and G. Leitmann, “Low acceleration trajectory optimization in a strong central force field,” Proc. IAS Symp. on Vehicle Systems Optimization, IAS, New York (1961), pp. 127–137.

    Google Scholar 

  75. G. Saccoccia, W. Deininger, F. Pagoinucci, and F. Scortecci, “Development of satellite electrical propulsion system,” Prepar. Future, 4, No. 2, 4–5 (1994).

    Google Scholar 

  76. G. Saccoccia and W. Berry, “European electric propulsion activities and programmes,” Acta Astronautica, 47, No. 2–9, 193–203 (2000).

    ADS  Google Scholar 

  77. G. Schmidt, “Nuclear and future flight propulsion,” Aerosp. Amer., 37, No. 12, 66 (1999).

    Google Scholar 

  78. G. B. Seaworth and R. E. Drubka, “An approach to solar orbit transfer vehicle system design and optimization,” AIAA Pap., 4770, 1–8 (1992).

    Google Scholar 

  79. N. Titus, “Optimal station-change maneuver for geostationary satellites using constant low thrust,” J. Guid. Cont. Dynam., 18, No. 5, 1151–1155 (1995).

    Google Scholar 

  80. Ya. V. Tkachenko, “Optimal transitions of a spacecraft with an energy storage and a low-power thruster,” Int. Appl. Mech., 39, No. 1, 116–122 (2003).

    Article  MATH  Google Scholar 

  81. Ya. V. Tkachenko, “Using energy storage in low thrust constant power thruster for optimal interorbital transfers,” Stabil. Contr. Theor. Appl., 5, No. 1, 22–40 (2003).

    Google Scholar 

  82. C. E. Vaughan and R. J. Cassady, “An updated assessment electric propulsion technology for near-Earth space missions,” AIAA Pap., 3202, 1–10 (1992).

    Google Scholar 

  83. L. Voss, “New thrust for US satellites,” Aerosp. Amer., 38, No. 2, 36–40 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 3–37, November 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiforenko, B.N. Optimal low-thrust orbital transfers in a central gravity field. Int Appl Mech 41, 1211–1238 (2005). https://doi.org/10.1007/s10778-006-0028-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0028-9

Keywords

Navigation