Log in

Two Forms Schemes of Deterministic Remote State Preparation for Four-Qubit Cluster-Type State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Two deterministic schemes are put forward to preparing an arbitrary four-qubit cluster-type state remotely by using two Bell states as quantum channel. The coefficients of the prepared states can be not only real, but also complex. To accomplish the schemes, we introduce some novel sets of ingenious measurement basis vectors. Especially, for complex coefficients case, we give two different forms schemes. The receiver will reconstruct the initial state by means of some appropriate unitary operations. The outstanding advantage of the present schemes is that the success probability in all the considered remote state preparation (RSP) can reach 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benatti, F., Fannes, M., Floreanini, R.: Quantum information, computation and cryptography. J. Phys. A Math. Theor. 808(28), 165–179 (2010)

    MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K., Crpeau, C.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Lo, H.K.: Classical-communication cost in distributed quantum-information processing. a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    ADS  Google Scholar 

  5. Braunstein, S.L., Pati, A.K.: Quantum Information with Continuous Variables. Springer, Berlin (2003)

    MATH  Google Scholar 

  6. Bouwmeester, D., Ekert, A., Zeilinger, A.: The Physics of Quantum Information. Springer, Berlin (2000)

    MATH  Google Scholar 

  7. Li, C.B., Jiang, Z.H., Zhang, Y.Q., Zhang, Z.Y., Wen, F., Chen, H.X., Zhang, Y.P., **ao, M.: . Phys. Rev. Appl. 7, 014023 (2017)

    ADS  Google Scholar 

  8. Tang, R.Y., Preetpaul, S.D., Vladimir, S.G., et al.: In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber. Opt. Express. 16(12), 9046–9053 (2008)

    ADS  Google Scholar 

  9. Agarwal, G.S.: Generation of pair coherent states and squeezing via the competition of Four-Wave mixing and amplified spontaneous emission. Phys. Rev. Lett. 57, 827 (1986)

    ADS  Google Scholar 

  10. Zhang, D., Li, C.B., Zhang, Z.Y., Zhang, Y.Q., Zhang, Y.P., **ao, M.: . Phys. Rev. A 96, 043847 (2017)

    ADS  Google Scholar 

  11. Chen, H.X., Zhang, X., Zhu, D.Y., Yang, C., Jiang, T., Zheng, H.B., Zhang, Y.P.: . Phys. Rev. A 90, 043846 (2014)

    ADS  Google Scholar 

  12. Li, X., Zhang, D., Zhang, D., et al.: Dressing control of biphoton waveform transitions[J]. Phys. Rev. A 97, 053830 (2018)

    ADS  Google Scholar 

  13. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Li, Y., Qiao, Y., Sang, M., Nie, Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019)

    MATH  Google Scholar 

  15. Zomorodi-Moghadam, M., Houshmand, M., Houshmand, M.: Optimizing teleportation cost in distributed quantum circuits. Int. J. Theor. Phys. 57, 848–861 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3-2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Yang, K., Huang, L., Yang, L.W.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Li, D., Cao, Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007)

    ADS  Google Scholar 

  19. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., **, K.L.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)

    ADS  Google Scholar 

  21. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    ADS  Google Scholar 

  22. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An effificient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. B 16, 910–914 (2007)

    Google Scholar 

  24. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  25. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    ADS  Google Scholar 

  26. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    ADS  Google Scholar 

  27. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    ADS  Google Scholar 

  28. Zhan, Y.B.: Remote state preparation of a Greenberger-Horne-Zeilinger class state. Commun. Theor. Phys. 43, 637 (2005)

    ADS  MathSciNet  Google Scholar 

  29. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. Europhys. Lett. 87, 30006 (2009)

    ADS  Google Scholar 

  30. **ang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    ADS  Google Scholar 

  31. Shi, J., Zhan, Y.B.: Probabilistic remote preparation of a tripartite high-dimensional equatorial entangled state. Commun. Thoer. Phys. 51, 239 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748 (2011)

    MATH  Google Scholar 

  33. Ma, S.-Y., Chen, W.-L., Qu, Z.-G., Tang, P.: Controlled remote preparation of an arbitrary four-qubit -state via partially entangled channel. Int. J. Theor. Phys. 56, 1653–1664 (2017)

    MATH  Google Scholar 

  34. Choudhury, B.S., Samanta, S.: An optional remote state preparation protocol for a four-qubit entangled state. Quantum Inf. Process. 18, 118 (2019)

    MATH  Google Scholar 

  35. Ma, P.-C., Chen, G.-B., Li, X.-W., Zhan, Y.-B.: Efficient scheme for remote preparation of an arbitrary tripartite four-particle entangled state. Int. J. Mod. Phys. B 31, 1850023 (2017)

    MATH  Google Scholar 

  36. Abeysinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)

    ADS  Google Scholar 

  37. Zhao, S.-Y., Fu, H., Li, X.-W., Chen, G.-B., Ma, P.-C., Zhan, Y.-B.: Efficient and economic schemes for remotely preparing a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 53, 2485–2491 (2014)

    MATH  Google Scholar 

  38. Hua, C., Chen, Y.X.: A scheme for remote state preparation of a general pure qubit with optimized classical communication cost. Quantum Inf. Process. 14, 1069–1076 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  39. **ao, X.Q., **ao, J., Ren, Y., Li, Y., Ji, C., Huang, X.G.: Remote state preparation of a twoatom entangled state in cavity QED. Int. J. Theor. Phys. 55, 2764–2772 (2016)

    MATH  Google Scholar 

  40. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efcient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55, 3454–3466 (2016)

    MATH  Google Scholar 

  41. Shi, J., Zhan, Y.B.: Probabilistic remote preparation of a tripartite high-dimensional equatorial entangled state. Commun. Thoer. Phys. 51, 239 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    ADS  Google Scholar 

  43. Lv, S.X., Zhao, Z.W., Zhou, P.: Multiparty-controlled joint remote preparation of an arbitrary m-qudit state with d-dimensional greenbergerCHorneCZeilinger states. Int. J. Theor. Phys. 57, 148–158 (2018)

    MATH  Google Scholar 

  44. Wu, N.N., Jiang, M.: A highly efcient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17, 1–17 (2018)

    ADS  Google Scholar 

  45. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    ADS  Google Scholar 

  46. Wei, Z.H., Zha, X.W., Y, Y.: Efficient schemes of remote state preparation for four-qubit entangled cluster-type state via two non-maximally entangled GHZ-type states. Int. J. Phys. 56, 1318–1352 (2017)

    MATH  Google Scholar 

  47. Ma, P.C., Zhan, Y.B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283(12), 2640–2643 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Rui Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, XW., Wang, MR. & Jiang, RX. Two Forms Schemes of Deterministic Remote State Preparation for Four-Qubit Cluster-Type State. Int J Theor Phys 59, 960–973 (2020). https://doi.org/10.1007/s10773-020-04383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04383-7

Keywords

Navigation