Log in

Analysis of the Accuracy of Methods for the Direct Measurement of Emissivity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Emissivity measurements are of great interest for both theoretical studies and technological applications. Emissivity is a property that specifies how much radiation a real body emits as compared to a blackbody. The emissivity determination of a sample should be an easy task: a simple comparison between the sample and blackbody radiation at the same temperature. Unfortunately, when measuring the emissivity, some practical problems arise due to the differences between the true emitted radiation and the detected quantity. To clarify this point, an analysis of different direct methods for emissivity measurement is presented. Furthermore, a method that includes multiple reflections is developed. The systematic errors associated with each method are computed theoretically as a function of wavelength, sample temperature, and emissivity, and the surrounding enclosure temperature and emissivity. In general, the error is very high for small sample enclosures, but it strongly decreases when the enclosure area increases. Although at short wavelengths all the analyzed methods produce similar errors, noticeable differences appear under other conditions, and methods considering more radiation terms do not always produce lower errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R., Howell, J.: Thermal Radiation Heat Transfer, 4th edn. Taylor and Francis, Washington (2002)

    Google Scholar 

  2. Ishii, J., Ono, A.: Meas. Sci. Technol. 12, 2103 (2001)

    Article  ADS  Google Scholar 

  3. Dai, J., Wang, X., Yuan, G.: J. Phys. Conf. Ser. 13, 63 (2005)

    Article  ADS  Google Scholar 

  4. Lindermeier, E., Haschberger, P., Tank, V., Dietl, H.: Appl. Opt. 31, 4527 (1992)

    ADS  Google Scholar 

  5. Revercomb, H.E., Buijs, H., Howell, H.B., LaPorte, D.D., Smith, W.L., Sromovsky, L.A.: Appl. Opt. 27, 3210 (1988)

    ADS  Google Scholar 

  6. Shimota, A., Kobayashi, H., Kadokura, S.: Appl. Opt. 38, 571 (1999)

    Article  ADS  Google Scholar 

  7. del Campo, L., Pérez-Sáez, R.B., Esquisabel, X., Fernández, I., Tello, M.J.: Rev. Sci. Instrum. 77, 113111 (2006)

    Article  ADS  Google Scholar 

  8. V. Fonseca, Evolution de la liaison chimique dans la phase ferroélectrique de LiNbO3 déterminée par spectroscopie d’émission infrarouge jusqu’à 1550 K. Ph.D. Thesis, Université d’Orléans, 2000

  9. Manara, J., Caps, R., Ebert, H.P., Hemberger, F., Fricke, J.: High Temp. High Press. 34, 65 (2002)

    Article  Google Scholar 

  10. Dufour, P.C., Rowell, N.L., Steele, A.G.: Appl. Opt. 37, 5923 (1998)

    Article  ADS  Google Scholar 

  11. Ballico, M.J., Jones, T.P.: Appl. Spectros. 49, 335 (1995)

    Article  ADS  Google Scholar 

  12. Sova, R.M., Linevsky, M.J., Thomas, M.E., Mark, F.F.: Infrared Phys. Technol. 39, 251 (1998)

    Article  ADS  Google Scholar 

  13. Lopes, R., Delmas, A., Sacadura, J.F.: High Temp. High Press. 32, 369 (2000)

    Article  Google Scholar 

  14. L. del Campo, Diseño, construcción y calibración de un radiómetro para medir emisividad espectral direccional. Aplicación a materiales de interés tecnológico. Ph.D. Thesis, University of the Basque Country, 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl B. Pérez-Sáez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Sáez, R.B., Campo, L.d. & Tello, M.J. Analysis of the Accuracy of Methods for the Direct Measurement of Emissivity. Int J Thermophys 29, 1141–1155 (2008). https://doi.org/10.1007/s10765-008-0402-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0402-4

Keywords

Navigation