Log in

Millimeter-Wave Dual-Band MIMO Antennas for 5G Wireless Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper suggests a dual-band 28/38 GHz four-element MIMO array based on dual-mode planar monopole antennas for 5G wireless applications. The design structure contains four planar monopole antennas; located at the corners on a 20 × 20-mm2 size Rogers RO4003 substrate with a dielectric constant of 3.55. The proposed planar monopole antenna has the shape of a crescent. In order to achieve the desired behavior and perfor mance, we engraved two rectangular slots on both sides and also added a notch at the bottom. In addition, we used a partial ground plane to enhance the isolation. Significant isolation (> − 23 dB) is achieved between antenna elements by employing spatial and polarization diversity techniques. To validate the design concept, a prototype of the four-element MIMO array is designed, fabricated, and measured. The experimental results show that the proposed antenna can cover the 27.25–29 GHz and 34.5–41 GHz bands with good isolation and high efficiency. Furthermore, the radiation pattern, the realized gain, and the channel capacity are also studied. According to the reached results, the proposed MIMO antenna may be a suitable application-oriented design for 5G MIMO applications at the millimeter-wave range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Li, J.-F.; & Chu, Q.-X. (2011). "A Compact Dual-Band Mimo Antenna of Mobile Phone". Journal of Electromagnetic Waves and Applications, 25 (11-12), 1577–1586. https://doi.org/10.1163/156939311797164800.

    Article  Google Scholar 

  2. Kumar, J. P. and Karunakar, G. (2019). "Compact C‐shaped MIMO diversity antenna for quad band applications with hexagonal stub for isolation improvement". International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.21971

  3. T. Yamada, T. Nishio, M. Morikura and K. Yamamoto, "Experimental evaluation of IEEE 802.11ad millimeter-wave WLAN devices," 2015 21st Asia-Pacific Conference on Communications (APCC), Kyoto, Japan, 2015, pp. 278–282, https://doi.org/10.1109/APCC.2015.7412525.

  4. M. J. Riaz, A. Sultan, M. Zahid, A. Javed, Y. Amin and J. Loo, "MIMO Antennas for Future 5G Communications," 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 2020, pp. 1-4, https://doi.org/10.1109/INMIC50486.2020.9318126.

  5. Sulyman, A. I., Nassar, A. T.; Samimi, M. K.; Maccartney, G. R., Rappaport, T. S.; & Alsanie, A. (2014). "Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands". IEEE Communications Magazine, 52(9), 78–86. https://doi.org/10.1109/mcom.2014.6894456.

    Article  Google Scholar 

  6. Sharaf, M. H.; Zaki, A. I.; Hamad, R. K. and Omar, M. M. M. (2020). "A Novel Dual-Band (38/60 GHz) Patch Antenna for 5G Mobile Handsets". Sensors, 20(9), 2541. https://doi.org/10.3390/s20092541.

    Article  Google Scholar 

  7. Ikram, M.; Nguyen-Trong, N.; Abbosh, (2019) "A. Multiband MIMO microwave and millimeter antenna system employing dual-function tapered slot structure". IEEE Trans. Antennas Propag., 67, 5705–5710. https://doi.org/10.1109/TAP.2019.2952461.

    Article  Google Scholar 

  8. Rappaport, T. S.; **ng, Y.; MacCartney, G. R.; Molisch, A. F.; Mellios, E. and Zhang, J. (2017). "Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models". IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230. https://doi.org/10.1109/tap.2017.2734243.

    Article  Google Scholar 

  9. S. H. Chae; S. Oh and S. Park, (2007) "Analysis of Mutual Coupling, Correlations, and TARC in WiBro MIMO Array Antenna," in IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 122-125. https://doi.org/10.1109/LAWP.2007.893109.

    Article  Google Scholar 

  10. Jeong, M. J.; Hussain, N.; Park, J. W.; Park, S. G.;Rhee, S. Y. and Kim, N. (2019). "Millimeter-wave microstrip patch antenna using vertically coupled split ring metaplate for gain enhancement". Microwave and Optical Technology Letters. https://doi.org/10.1002/mop.31908

  11. Feng, W.; Li, Y., **, D. ; Su, L. and Chen, S. (2016). Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions. Sensors, 16(6), 892. https://doi.org/10.3390/s16060892.

    Article  Google Scholar 

  12. Nizar S.; Lassaad L. and Ali G.,(2022) "Design of a Dual-Polarized UWB 5G NR Antenna", Wireless Personal Communications, Springer , 123 (2), 1293–1310. https://doi.org/10.1007/s11277-021-09181-w.

    Article  Google Scholar 

  13. M. Hussain, S. Abbas, M. Alibakhshikenari, M. Dalarsson and F. Falcone, "Circularly Polarized Wideband Antenna for 5G Millimeter Wave Application," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 2022, pp. 830-831. https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886807

  14. M. Hussain, Q. Abbas, S. H. H. Gardzi, M. Alibakhshikenari, F. Falcone and E. Limiti, "Ultra-Wideband MIMO Antenna Realization for Indoor Ka-band Applications," 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2022, pp. 108-109. https://doi.org/10.23919/USNC-URSINRSM57467.2022.9881413.

    Article  Google Scholar 

  15. Al Abbas, E.; Ikram, M.; Mobashsher, A. T. and Abbosh, A. (2019). MIMO Antenna System for Multi-Band Millimeter-Wave 5G and Wideband 4G Mobile Communications. IEEE Access, 7, 181916–181923. https://doi.org/10.1109/access.2019.2958897.

    Article  Google Scholar 

  16. Nizar S.; and Lassaad L., (2021) "Design and analysis of wideband MIMO antenna arrays for 5G smartphone application". International Journal of Microwave and Wireless Technologies, 14(4), 511-523. https://doi.org/10.1017/S1759078721000659.

    Article  Google Scholar 

  17. Khalid, M.; Iffat Naqvi, S.; Hussain, N.; Rahman; M., Fawad; Mirjavadi, S.S.; Muhammad Jamil, K.; Amin, Y. (2020) "4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications". Electronics, 9(1), 71. https://doi.org/10.3390/electronics9010071.

    Article  Google Scholar 

  18. Bilal, M.; Naqvi, S.I.; Hussain, N.; Amin, Y.; Kim, N. (2022) "High-Isolation MIMO Antenna for 5G Millimeter-Wave Communication Systems". Electronics, 11, 962. https://doi.org/10.3390/electronics11060962.

    Article  Google Scholar 

  19. Kamal, M.; Yang, S.; Ren, X.-C.; Altaf, A.; Kiani, S.; Anjum, M.; Iqbal, A.; Asif, M.; Saeed, S. (2021) "Infinity Shell Shaped MIMO Antenna Array for mm-Wave 5G Applications". Electronics, 10, 165. https://doi.org/10.3390/electronics10020165.

    Article  Google Scholar 

  20. May Abd A. E.; Asmaa Elsayed F.; and Khalid Fawzy A. (2022) "Millimetric-Wave Quad-Band MIMO Antennas for Future Generations of Mobile Communications". Progress In Electromagnetics Research B, Vol. 95, 41-60. https://doi.org/10.2528/PIERB22010101.

    Article  Google Scholar 

  21. Sabek, A.R.; Ali, W.A.E. and Ibrahim, A.A. (2022) "Minimally Coupled Two-Element MIMO Antenna with Dual Band (28/38 GHz) for 5G Wireless Communications". J Infrared Milli Terahz Waves, 43, 335–348. https://doi.org/10.1007/s10762-022-00857-3.

    Article  Google Scholar 

  22. M. Hussain et al., "A Simple Low-Profile Broadband Antenna Design for 5G Millimeter-Wave Applications Over 38 GHz Spectrum," 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), Cali, Colombia, 2021, pp. 1-4. https://doi.org/10.1109/LAMC50424.2021.9662400

  23. Hussain, Musa, Esraa Mousa Ali, Syed Muhammad Rizvi Jarchavi, Abir Zaidi, Ali Imran Najam, Abdullah Alhumaidi Alotaibi, Ahmed Althobaiti, and Sherif S. M. Ghoneim. (2022) "Design and Characterization of Compact Broadband Antenna and Its MIMO Configuration for 28 GHz 5G Applications" Electronics 11, no. 4: 523. https://doi.org/10.3390/electronics11040523.

  24. Ali, W. ; Das, S. ; Medkour, H. and Lakrit, S. (2021) "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications" Microsystem Technologies, 27, 283–292. https://doi.org/10.1007/s00542-020-04951-1.

    Article  Google Scholar 

  25. Marzouk, H. M.; Ahmed, M. I. and Shaalan, A.-E. H. (2019). "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications”. Progress In Electromagnetics Research C, 93, 103–117. https://doi.org/10.2528/pierc19032303.

    Article  Google Scholar 

  26. A. E. Farahat and K. F. A. Hussein, (2022) "Dual-Band (28/38 GHz) Wideband MIMO Antenna for 5G Mobile Applications". in IEEE Access, vol. 10, 32213-32223. https://doi.org/10.1109/ACCESS.2022.3160724.

    Article  Google Scholar 

  27. Thi Thanh Tu, D.; Gia Thang, N.; Tuan Ngoc, N.; Thi Bich Phuong, N. and Van Yem, V. (2017). "28/38 GHz dual-band MIMO antenna with low mutual coupling using novel round patch EBG cell for 5G applications". International Conference on Advanced Technologies for Communications (ATC). https://doi.org/10.1109/atc.2017.8167644

  28. Aghoutane B.; Das S.; EL Ghzaoui M.; Madhav B.T.P.; El Faylali H. (2022) "A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications". AEU - International Journal of Electronics and Communications,145 , art. no. 154071. https://doi.org/10.1016/j.aeue.2021.154071.

  29. Hussain, Musa, Wahaj Abbas Awan, Esraa Musa Ali, Mohammed S. Alzaidi, Mohammad Alsharef, Dalia H. Elkamchouchi, Abdullah Alzahrani, and Mohamed Fathy Abo Sree. (2022)"Isolation Improvement of Parasitic Element-Loaded Dual-Band MIMO Antenna for Mm-Wave Applications" Micromachines 13, no. 11: 1918. https://doi.org/10.3390/mi13111918.

  30. Hussain, Musa, Syed Muhammad Rizvi Jarchavi, Syeda Iffat Naqvi, Usama Gulzar, Salahuddin Khan, Mohammad Alibakhshikenari, and Isabelle Huynen. (2021) "Design and Fabrication of a Printed Tri-Band Antenna for 5G Applications Operating across Ka-, and V-Band Spectrums" Electronics 10, no. 21: 2674. https://doi.org/10.3390/electronics10212674.

Download references

Acknowledgements

We are especially thankful to Prof. Ali Gharsallah and all the members of the laboratory of the Faculty of Sciences of Tunis (FST) for the time and guidance given through this work.

Author information

Authors and Affiliations

Authors

Contributions

Nizar Sghaier and Anouar Belkadi wrote the main manuscript text and Nizar Sghaier prepared all the figures. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Nizar Sghaier.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sghaier, N., Belkadi, A., Hassine, I.B. et al. Millimeter-Wave Dual-Band MIMO Antennas for 5G Wireless Applications. J Infrared Milli Terahz Waves 44, 297–312 (2023). https://doi.org/10.1007/s10762-023-00914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-023-00914-5

Keywords

Navigation