Log in

IL-7 Receptor Blockade Inhibits IL-17-Producing γδ Cells and Suppresses Melanoma Development

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In order to understand how tumor cells can escape immune surveillance mechanisms and thus develop antitumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. In our current study, wild-type mice are inoculated with melanoma cell line B16-F10 (1 × 106/mouse) and treated with anti-IL-7R antibody or recombined mouse IL-7 (rmIL-7). Growth of melanoma cell line B16-F10 was significantly inhibited in anti-IL-7R antibody-treated mice and markedly promoted in rmIL-7-treated mice compared with that in control. A decreased number of myeloid-derived suppressor cells (MDSCs) and γδ cells in tumor tissues were detected from anti-IL-7R antibody-treated mice. Next, administration of the anti-IL-7R antibody significantly blocked the enrichment in IL-17+ γδ cells in tumor. Moreover, in our further experiment, promoted melanoma development induced by rmIL-7 was abrogated with p-Stat3 inhibitor. The increased proportion and absolute number of IL-17-producing γδ27 cell induced by rmIL-7 were also abolished with the p-Stat3 inhibitor administration, and the suppressed melanoma development induced by anti-IL-7R antibody treatment was reversed with additional use of Ad-IL-17. In conclusion, IL-7/IL-7R-Stat3-IL-17 pathway promotes melanoma growth, and inhibition of IL-7/IL-7R-Stat3-IL-17 pathway may contribute to tumor growth in murine models of melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wakita, D., K. Sumida, Y. Iwakura, H. Nishikawa, T. Ohkuri, K. Chamoto, et al. 2010. Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. European Journal of Immunology 40: 1927–37.

    Article  PubMed  CAS  Google Scholar 

  2. Croci, D.O., M.F. Zacarias Fluck, M.J. Rico, P. Matar, G.A. Rabinovich, and O.G. Scharovsky. 2007. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunology, Immunotherapy: CII 56: 1687–700.

    Article  PubMed  Google Scholar 

  3. Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21: 467–76.

    Article  PubMed  CAS  Google Scholar 

  4. Dong, C. 2006. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nature Reviews Immunology 6: 329–33.

    Article  PubMed  CAS  Google Scholar 

  5. Hayday, A.C. 2009. Gammadelta T, cells and the lymphoid stress-surveillance response. Immunity 31: 184–96.

    Article  PubMed  CAS  Google Scholar 

  6. Lockhart, E., A.M. Green, and J.L. Flynn. 2006. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. Journal of Immunology 177: 4662–9.

    Article  CAS  Google Scholar 

  7. Ribot, J.C., M. Chaves-Ferreira, F. d’Orey, M. Wencker, N. Goncalves-Sousa, J. Decalf, et al. 2010. Cutting edge: adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-gamma- or IL-17-producing gammadelta T cells upon infection. Journal of Immunology 185: 6421–5.

    Article  CAS  Google Scholar 

  8. Ribot, J.C., A. de Barros, D.J. Pang, J.F. Neves, V. Peperzak, S.J. Roberts, et al. 2009. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nature Immunology 10: 427–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Goodwin, R.G., and A.E. Namen. 1989. The cloning and characterization of interleukin-7. The Year in Immunology 6: 127–39.

    PubMed  Google Scholar 

  10. Fry, T.J., and C.L. Mackall. 2002. Interleukin-7: from bench to clinic. Blood 99: 3892–904.

    Article  PubMed  CAS  Google Scholar 

  11. Mackall, C.L., T.J. Fry, and R.E. Gress. 2011. Harnessing the biology of IL-7 for therapeutic application. Nature Reviews Immunology 11: 330–42.

    Article  PubMed  CAS  Google Scholar 

  12. Michel, M.L., D.J. Pang, S.F. Haque, A.J. Potocnik, D.J. Pennington, and A.C. Hayday. 2012. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing gammadelta cells. Proceedings of the National Academy of Sciences of the United States of America 109: 17549–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Jian M, Qingfu Z, Yanduo J, Guocheng J, Xueshan Q. Anti-lymphangiogenesis effects of a specific anti-interleukin 7 receptor antibody in lung cancer model in vivo. Molecular Carcinogenesis 2013 doi: 10.1002/mc.22082.

  14. Kim, H.K., H. Zhang, H. Li, T.T. Wu, S. Swisher, D. He, et al. 2008. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma. Neoplasia 10: 1411–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. He, D., H. Li, N. Yusuf, C.A. Elmets, J. Li, J.D. Mountz, et al. 2010. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. Journal of Immunology 184: 2281–8.

    Article  CAS  Google Scholar 

  16. Schwarzenberger, P., V. La Russa, A. Miller, P. Ye, W. Huang, A. Zieske, et al. 1998. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. Journal of Immunology 161: 6383–9.

    CAS  Google Scholar 

  17. Tang, H., S. Pang, M. Wang, X. **ao, Y. Rong, H. Wang, et al. 2010. TLR4 activation is required for IL-17-induced multiple tissue inflammation and wasting in mice. Journal of Immunology 185: 2563–9.

    Article  CAS  Google Scholar 

  18. Kong, L.Y., M.K. Abou-Ghazal, J. Wei, A. Chakraborty, W. Sun, W. Qiao, et al. 2008. A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clinical Cancer Research: an official journal of the American Association for Cancer Research 14: 5759–68.

    Article  CAS  Google Scholar 

  19. Gabrilovich, D.I., and S. Nagaraj. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology 9: 162–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Marigo, I., L. Dolcetti, P. Serafini, P. Zanovello, and V. Bronte. 2008. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews 222: 162–79.

    Article  PubMed  CAS  Google Scholar 

  21. Bronte, V., and P. Zanovello. 2005. Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology 5: 641–54.

    Article  PubMed  CAS  Google Scholar 

  22. Pallard, C., A.P. Stegmann, T. van Kleffens, F. Smart, A. Venkitaraman, and H. Spits. 1999. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10: 525–35.

    Article  PubMed  CAS  Google Scholar 

  23. Barata, J.T., A. Silva, J.G. Brandao, L.M. Nadler, A.A. Cardoso, and V.A. Boussiotis. 2004. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. The Journal of Experimental Medicine 200: 659–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Sutton, C.E., S.J. Lalor, C.M. Sweeney, C.F. Brereton, E.C. Lavelle, and K.H. Mills. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31: 331–41.

    Article  PubMed  CAS  Google Scholar 

  25. Gaffen, S.L. 2009. Structure and signalling in the IL-17 receptor family. Nature Reviews Immunology 9: 556–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. He, D., L. Wu, H.K. Kim, H. Li, C.A. Elmets, and H. Xu. 2006. CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. Journal of Immunology 177: 6852–8.

    Article  CAS  Google Scholar 

  27. Martin-Orozco, N., P. Muranski, Y. Chung, X.O. Yang, T. Yamazaki, S. Lu, et al. 2009. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31: 787–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Murugaiyan, G., and B. Saha. 2009. Protumor vs antitumor functions of IL-17. Journal of Immunology 183: 4169–75.

    Article  CAS  Google Scholar 

  29. Xu, S., Y. Han, X. Xu, Y. Bao, M. Zhang, and X. Cao. 2010. IL-17A-producing gammadeltaT cells promote CTL responses against Listeria monocytogenes infection by enhancing dendritic cell cross-presentation. Journal of Immunology 185: 5879–87.

    Article  CAS  Google Scholar 

  30. Peng, G., H.Y. Wang, W. Peng, Y. Kiniwa, K.H. Seo, and R.F. Wang. 2007. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27: 334–48.

    Article  PubMed  CAS  Google Scholar 

  31. Couzi, L., Y. Levaillant, A. Jamai, V. Pitard, R. Lassalle, K. Martin, et al. 2010. Cytomegalovirus-induced gammadelta T cells associate with reduced cancer risk after kidney transplantation. Journal of the American Society of Nephrology : JASN 21: 181–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Kabelitz, D., D. Wesch, and W. He. 2007. Perspectives of gammadelta T cells in tumor immunology. Cancer Research 67: 5–8.

    Article  PubMed  CAS  Google Scholar 

  33. Shibata, K., H. Yamada, H. Hara, K. Kishihara, and Y. Yoshikai. 2007. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. Journal of Immunology 178: 4466–72.

    Article  CAS  Google Scholar 

  34. Darnell Jr., J.E. 1997. STATs and gene regulation. Science 277: 1630–5.

    Article  PubMed  CAS  Google Scholar 

  35. Jarnicki, A., T. Putoczki, and M. Ernst. 2010. Stat3: linking inflammation to epithelial cancer—more than a “gut” feeling? Cell Division 5: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aoki, Y., G.M. Feldman, and G. Tosato. 2003. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101: 1535–42.

    Article  PubMed  CAS  Google Scholar 

  37. Catlett-Falcone, R., T.H. Landowski, M.M. Oshiro, J. Turkson, A. Levitzki, R. Savino, et al. 1999. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10: 105–15.

    Article  PubMed  CAS  Google Scholar 

  38. Rebouissou, S., M. Amessou, G. Couchy, K. Poussin, S. Imbeaud, C. Pilati, et al. 2009. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457: 200–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Yu, H., and R. Jove. 2004. The STATs of cancer—new molecular targets come of age. Nature Reviews Cancer 4: 97–105.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Found of China Grants 81202335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Liu, J., Mao, X. et al. IL-7 Receptor Blockade Inhibits IL-17-Producing γδ Cells and Suppresses Melanoma Development. Inflammation 37, 1444–1452 (2014). https://doi.org/10.1007/s10753-014-9869-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9869-2

KEY WORDS

Navigation