Log in

Interleukin-1 Beta Increases Activity of Human Endothelial Progenitor Cells: Involvement of PI3K-Akt Signaling Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Interleukin-1β (IL-1β) is a multifunctional proinflammatory cytokine upregulated in acute phase of heart ischemic disease. Controversial effects of IL-1β have been demonstrated on endothelial progenitor cells (EPCs) functional activity. The aim of this study was to investigate the in vitro effect of IL-1β on activity of human origin EPCs and the possible mechanism involved. EPCs were isolated from peripheral blood of healthy volunteers without cardiovascular risk factors and characterized. After ex vivo cultivation, EPCs were stimulated with a series of final concentrations (0, 0.1, 1, and 10 ng/ml) of IL-1β for 24 h. In some other experiments, EPCs were pretreated with 10 μM LY294002 (Akt inhibitor) for 30 min and then stimulated with 1 ng/ml IL-1β for 24 h. Cell proliferation, apoptosis, adhesion, and migration were determined, respectively, by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, annexin V/propidium iodide binding assay, adhesion assay, and transwell migration assay. In addition, the vascular endothelial vascular growth factor-A (VEGF-A) production has been examined using quantitative real-time RT-PCR and ELISA assay. Furthermore, the total and phosphorylation level of Akt was determined by Western blot. IL-1β significantly stimulated EPC proliferation, migration, and adhesion and upregulated the angiogenic growth factor VEGF-A at mRNA and protein level, while exerted no influence on cell apoptosis. However, pretreatment with LY294002 significantly diminished IL-1β-induced proliferation, migration, adhesion, and VEGF-A production. One nanogram per milliliter IL-1β for 15 min activated phosphorylation of Akt. These results suggest a potent role for IL-1β in upregulating EPCs functions. The phosphatidyl-inositol-3-kinase-Akt signaling pathway could be involved in the regulation of EPCs functions induced by IL-1β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EPCs:

Endothelial progenitor cells.

HIF-1α:

Hypoxia-inducible factor 1α.

IL-1β:

Interleukin-1 beta.

M199:

Medium 199.

MNCs:

Mononuclear cells.

MTT:

3-(4 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide.

PBS:

Phosphate-buffered saline.

VEGF:

Endothelial vascular growth factor.

VEGF-A:

Endothelial vascular growth factor-A.

PI3K:

Phosphatidylinositol 3-kinase

References

  1. Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967.

    Article  PubMed  CAS  Google Scholar 

  2. Hristov, M., W. Erl, and P.C. Weber. 2003. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 1185–1189.

    Article  PubMed  CAS  Google Scholar 

  3. Amano, K., M. Okigaki, Y. Adachi, S. Fujiyama, Y. Mori, A. Kosaki, et al. 2004. Mechanism for IL-1 beta-mediated neovascularization unmasked by IL-1 beta knock-out mice. Journal of Molecular and Cellular Cardiology 36(4): 469–480.

    Article  PubMed  CAS  Google Scholar 

  4. Werner, N., and G. Nickenig. 2006. Influence of cardiovascular risk factors on endothelial progenitor cells: Limitations for therapy? Arteriosclerosis, Thrombosis, and Vascular Biology 26: 257–266.

    Article  PubMed  CAS  Google Scholar 

  5. Urbich, C., A. Aicher, C. Heeschen, E. Dernbach, W.K. Hofmann, A.M. Zeiher, et al. 2005. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. Journal of Molecular and Cellular Cardiology 39: 733–742.

    Article  PubMed  CAS  Google Scholar 

  6. Yamazaki, Y., and T. Morita. 2006. Molecular and functional diversity of vascular endothelial growth factors. Molecular Diversity 10: 515–527.

    Article  PubMed  CAS  Google Scholar 

  7. Jia, H., A. Bagherzadeh, R. Bicknell, M.R. Duchen, D. Liu, and I. Zachary. 2004. Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. Journal of Biological Chemistry 279: 36148–36157.

    Article  PubMed  CAS  Google Scholar 

  8. Dimmeler, S., A. Aicher, M. Vasa, C. Mildner-Rihm, K. Adler, M. Tiemann, et al. 2001. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. The Journal of Clinical Investigation 108: 391–397.

    PubMed  CAS  Google Scholar 

  9. Qiu, F.Y., X.X. Song, H. Zheng, Y.B. Zhao, and G.S. Fu. 2009. Thymosin beta4 induces endothelial progenitor cell migration via PI3K/Akt/eNOS signal transduction pathway. Journal of Cardiovascular Pharmacology 53(3): 209–214.

    Article  PubMed  CAS  Google Scholar 

  10. Wada, T., and J.M. Penninger. 2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838–2849.

    Article  PubMed  CAS  Google Scholar 

  11. Ono, K., A. Matsumori, T. Shioi, Y. Furukawa, and S. Sasayama. 1998. Cytokine gene expression after myocardial infarction in rat hearts: Possible implication in left ventricular remodeling. Circulation 98: 149–156.

    Article  PubMed  CAS  Google Scholar 

  12. Pudil, R., V. Pidrman, J. Krejsek, J. Gregor, M. Tichý, C. Andrýs, et al. 1999. Cytokines and adhesion molecules in the course of acute myocardial infarction. Clinica Chimica Acta 280(1–2): 127–134.

    Article  CAS  Google Scholar 

  13. Henrich, D., C. Seebach, K. Wilhelm, and I. Marzi. 2007. High dosage of simvastatin reduces TNF-alpha-induced apoptosis of endothelial progenitor cells but fails to prevent apoptosis induced by IL-1beta in vitro. Journal of Surgical Research 142: 13–19.

    Article  PubMed  CAS  Google Scholar 

  14. Rosell, A., K. Arai, J. Lok, T. He, S. Guo, M. Navarro, et al. 2009. Interleukin-1beta augments angiogenic responses of murine endothelial progenitor cells in vitro. Journal of Cerebral Blood Flow and Metabolism 29: 933–943.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, J.Z., J.H. Zhu, X.X. Wang, J.H. Zhu, X.D. **e, J. Sun, et al. 2004. Effects of homocysteine on number and activity of endothelial progenitor cells from peripheral blood. Journal of Molecular and Cellular Cardiology 36: 233–239.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, X.X., F.R. Zhang, Y.P. Shang, J.H. Zhu, X.D. **e, Q.M. Tao, et al. 2007. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: A pilot randomized controlled trial. Journal of the American College of Cardiology 49(14): 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  17. Hu, X.S., C.Q. Du, L. Yang, X.Y. Yao, and S.J. Hu. 2010. Proteasome inhibitor MG132 suppresses number and function of endothelial progenitor cells: Involvement of nitric oxide synthase inhibition. International Journal of Molecular Medicine 25(3): 385–392.

    Article  PubMed  CAS  Google Scholar 

  18. **a, L., X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, et al. 2008. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. British Journal of Pharmacology 155: 387–394.

    Article  PubMed  CAS  Google Scholar 

  19. Yang, Z., J.M. Wang, L. Chen, C.F. Luo, A.L. Tang, and J. Tao. 2007. Acute exercise-induced nitric oxide production contributes to upregulation of circulating endothelial progenitor cells in healthy subjects. Journal of Human Hypertension 21: 452–460.

    Article  PubMed  CAS  Google Scholar 

  20. Qin, S.L., T.S. Li, M. Takahashi, and K. Hamano. 2006. In vitro assessment of the effect of interleukin-1beta on angiogenic potential of bone marrow cells. Circulation Journal 70: 1195–1199.

    Article  PubMed  CAS  Google Scholar 

  21. Fan, F., O. Stoeltzing, W. Liu, M.F. McCarty, Y.D. Jung, N. Reinmuth, et al. 2004. Interleukin-1beta regulates angiopoietin-1 expression in human endothelial cells. Cancer Research 64: 3186–3190.

    Article  PubMed  CAS  Google Scholar 

  22. Asahara, T., T. Takahashi, H. Masuda, C. Kalka, D. Chen, H. Iwaguro, et al. 1999. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal 18: 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  23. Fadini, G.P., I. Baesso, M. Albiero, S. Sartore, C. Agostini, and A. Avogaro. 2008. Technical notes on endothelial progenitor cells: Ways to escape from the knowledge plateau. Atherosclerosis 197: 496–503.

    Article  PubMed  CAS  Google Scholar 

  24. Richardson, M.R., and M.C. Yoder. 2011. Endothelial progenitor cells: Quo Vadis? Journal of Molecular and Cellular Cardiology 50(2): 266–272.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jun- Hui Zhu and Mohamed S. Draz for the critically reviewing the manuscript.

Conflicts of Interest

The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Guo, XG., Du, CQ. et al. Interleukin-1 Beta Increases Activity of Human Endothelial Progenitor Cells: Involvement of PI3K-Akt Signaling Pathway. Inflammation 35, 1242–1250 (2012). https://doi.org/10.1007/s10753-012-9434-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9434-9

KEY WORDS

Navigation