Log in

Interplay between sediment properties and stream flow conditions influences surface sediment organic matter and microbial biomass in a Mediterranean river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

River sediment physical properties are linked to flow and are important for the attachment of microorganisms. The objective of this study was to assess the relationship between physical characteristics of surface sediments in a Mediterranean river and their organic matter content and microbial biomass. To do this, we analyzed particle-size distribution, organic matter content, chlorophyll-a, and bacterial density in sediments collected along a 54 km reach under three flow conditions (i.e., drought, low-flow, and base-flow). Multiple regression analysis revealed that during the drought condition, sediment heterogeneity and porosity regulated bacterial density and organic matter content and that bacterial density tended to be lower as the proportion of mud increased. However, under the low-flow and base-flow conditions, bacterial density was related to percent mud, which may provide more surface area for colonization than cobbles. Algal biomass was affected by sediment particle-size distribution only under the base-flow condition, when chlorophyll-a content was enhanced by sediment heterogeneity and a higher relative abundance of sand, suggesting that when biomass declines due to increased shear stress, sediment particle-size distribution becomes more determinant for algal colonization. Our results highlight the importance of considering the interplay of sediment particle-size distribution and flow regime when studying microbial communities in river sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña, V., A. Giorgi, I. Muñoz, F. Sabater & S. Sabater, 2007. Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. Journal of the North American Benthological Society 26: 54–69.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2009. Stream ecology, structure and function of running waters, 2nd ed. Springer, Dordrecht.

    Google Scholar 

  • Alyamani, M. S. & Z. Şen, 1993. Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water 31: 551–555.

    Article  Google Scholar 

  • Amalfitano, S. & S. Fazi, 2008. Recovery and quantification of bacterial cells associated with streambed sediments. Journal of microbiological methods 75: 237–243.

    Article  CAS  Google Scholar 

  • Amalfitano, S., S. Fazi & A. Puddu, 2009. Flow cytometric analysis of benthic prokaryotes attached to sediment particles. Journal of Microbiological Methods 79: 246–249.

    Article  Google Scholar 

  • Artigas, J., A. M. Romaní, A. Gaudes, I. Munoz & S. Sabater, 2009. Organic matter availability structures microbial biomass and activity in a Mediterranean stream. Freshwater Biology 54: 2025–2036.

    Article  CAS  Google Scholar 

  • Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romaní & A. I. Packmann, 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14: 251–263.

    Article  CAS  Google Scholar 

  • Beyer, W. & E. Banscher, 1975. Zur Kolmation der Gewasserbetten bei der Uferfiltratgewinnung. -Z. Angewandte Geologie 12: 565–570.

    Google Scholar 

  • Biggs, B. J. & P. Gerbeaux, 1993. Periphyton development in relation to macro-scale (geology) and micro-scale (velocity) limiters in two gravel-bed rivers, New Zealand. New Zealand Journal of Marine and Freshwater Research 27: 39–53.

    Article  Google Scholar 

  • Biggs, B. J. & C. W. Hickey, 1994. Periphyton responses to a hydraulic gradient in a regulated river in New Zealand. Freshwater biology 32: 49–59.

    Article  Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.

    Article  Google Scholar 

  • Brunke, M., 1999. Colmation and depth filtration within streambeds: retention of particles in hyporheic interstices. International Review of Hydrobiology 84: 99–117.

    CAS  Google Scholar 

  • Brunke, M. & T. O. M. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.

    Article  Google Scholar 

  • Cardinale, B. J., M. A. Palmer, C. M. Swan, S. Brooks & N. L. Poff, 2002. The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology 83: 412–422.

    Article  Google Scholar 

  • Cardoso-Leite, R., R. Guillermo-Ferreira, M. C. Novaes & A. F. Tonetto, 2015. Microhabitat hydraulics predict algae growth in running systems. Ecohydrology & Hydrobiology 15: 49–52.

    Article  Google Scholar 

  • Carman, P. C., 1956. Flow of gases through porous media. Butterworths Scientific Publications, London: 12–33.

    Google Scholar 

  • Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy de Montréal. Hydrobiologia 354: 101–110.

    Article  CAS  Google Scholar 

  • Clement, T. P., B. S. Hooker & R. S. Skeen, 1996. Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth. Groundwater 34: 934–942.

    Article  CAS  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Marine Ecology Progress Series 43: 1–10.

    Article  Google Scholar 

  • Culp, J. M., S. J. Walde & R. W. Davies, 1983. Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences 40: 1568–1574.

    Article  Google Scholar 

  • Cunningham, A. B., W. G. Characklis, F. Abedeen & D. Crawford, 1991. Influence of biofilm accumulation on porous media hydrodynamics. Environmental Science & Technology 25: 1305–1311.

    Article  CAS  Google Scholar 

  • Eisenmann, H., P. Burgherr & E. I. Meyer, 1999. Spatial and temporal heterogeneity of an epilithic streambed community in relation to the habitat templet. Canadian Journal of Fisheries and Aquatic Sciences 56: 1452–1460.

    Article  Google Scholar 

  • Findlay, S., D. Strayer, C. Goumbala & K. Gould, 1993. Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnology and Oceanography 38: 1493–1499.

    Article  CAS  Google Scholar 

  • Fischer, H., A. Sukhodolov, S. Wilczek & C. Engelhardt, 2003. Effects of flow dynamics and sediment movement on microbial activity in a lowland river. River Research and Applications 19: 473–482.

    Article  Google Scholar 

  • Freimann, R., H. Bürgmann, S. E. Findlay & C. T. Robinson, 2015. Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains. Frontiers in Microbiology 6: 1221.

    Article  Google Scholar 

  • Freixa, A., E. Ejarque, S. Crognale, S. Amalfitano, S. Fazi, A. Butturini & A. M. Romaní, 2016. Sediment microbial communities rely on different dissolved organic matter sources along a Mediterranean river continuum. Limnology and Oceanography 61: 1389–1405.

    Article  CAS  Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Grabowski, R. C., G. Wharton, G. R. Davies & I. G. Droppo, 2012. Spatial and temporal variations in the erosion threshold of fine riverbed sediments. Journal of Soils and Sediments 12: 1174–1188.

    Article  Google Scholar 

  • Hart, D. D., B. D. Clark & A. Jasentuliyana, 1996. Fine-scale field measurement of benthic flow environments inhabited by stream invertebrates. Limnology and Oceanography 41: 297–308.

    Article  Google Scholar 

  • Heppell, C. M., G. Wharton, J. A. C. Cotton, J. A. B. Bass & S. E. Roberts, 2009. Sediment storage in the shallow hyporheic of lowland vegetated river reaches. Hydrological Processes 23: 2239–2251.

    Article  Google Scholar 

  • Hudson, J. J., J. C. Roff & B. K. Burnison, 1992. Bacterial productivity in forested and open streams in Southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 49: 2412–2422.

    Article  Google Scholar 

  • Jeffrey, S. W. & U. G. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b and c in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167: 191–194.

    Article  CAS  Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1989. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: Effects of temperature, water chemistry, and habitat. Limnology and Oceanography 34: 718–733.

    Article  CAS  Google Scholar 

  • Kerr, A. W., H. K. Hall & S. A. Kozub, 2002. Doing statistics with SPSS. Sage Publications, London.

    Google Scholar 

  • Kim, S. B., 2006. Numerical analysis of bacterial transport in saturated porous media. Hydrological processes 20: 1177–1186.

    Article  Google Scholar 

  • Koiter, A. J., P. N. Owens, E. L. Petticrew & D. A. Lobbet, 2015. The role of gravel channel beds on the particle size and organic matter selectivity of transported fine-grained sediment: Implications for sediment fingerprinting and biogeochemical flux research. Journal of Soils and Sediments 15: 2174–2188.

    Article  CAS  Google Scholar 

  • Kozeny, J., 1953. Das wasser im boden, grundwasserbewegung. Hydraulik 380: 445.

    Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater biology 48: 1161–1172.

    Article  Google Scholar 

  • Murphy, J. & J. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Murthy, V. N. S., 2002. Geotechnical engineering: Principles and practices of soil mechanics and foundation engineering. CRC Press, Boca Raton.

    Google Scholar 

  • Neter, J., M. H. Kutner, C. J. Nachtsheim & W. Wasserman, 1996. Applied linear statistical models, 4th ed. Irwin, Chicago.

    Google Scholar 

  • Nikora, V. I., A. N. Sukhodolov & P. M. Rowinski, 1997. Statistical sand wave dynamics in one-directional water flows. Journal of Fluid Mechanics 351: 17–39.

    Article  Google Scholar 

  • Packman, A. I. & M. Salehin, 2003. Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 494: 291–297.

    Article  Google Scholar 

  • Perujo, N., A. M. Romaní & X. Sanchez-Vila, 2018. Bilayer infiltration system combines benefits from both coarse and fine sands promoting nutrient accumulation in sediments and increasing removal rates. Environmental Science & Technology. https://doi.org/10.1021/acs.est.8b00771.

    Article  Google Scholar 

  • Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental management 14: 629–645.

    Article  Google Scholar 

  • Prosser, I. P., I. D. Rutherfurd, J. M. Olley, W. J. Young, P. J. Wallbrink & C. J. Moran, 2001. Large-scale patterns of erosion and sediment transport in river networks, with examples from Australia. Marine and Freshwater Research 52: 81–99.

    Article  Google Scholar 

  • Romaní, A. M. & S. Sabater, 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology 82: 3232–3245.

    Article  Google Scholar 

  • Rosgen, D. L. & H. L. Silvey, 1996. Applied river morphology. Wildland Hydrology, Pagosa Springs.

    Google Scholar 

  • Rovira, A. & R. J. Batalla, 2006. Temporal distribution of suspended sediment transport in a Mediterranean basin: The Lower Tordera (NE Spain). Geomorphology 79: 58–71.

    Article  Google Scholar 

  • Sabater, S., H. Guasch, I. Muñoz & A. M. Romaní, 2006. Hydrology, light and the use of organic and inorganic materials as structuring factors of biological communities in Mediterranean streams. Limnetica 25: 335–348.

    Google Scholar 

  • Santmire, J. A. & L. G. Leff, 2007. The influence of stream sediment particle size on bacterial abundance and community composition. Aquatic Ecology 41: 153–160.

    Article  CAS  Google Scholar 

  • Schälchli, U., 1993. Die Kolmation von Fliessgewässersohlen (Doctoral dissertation, Diss. Techn. Wiss. ETH Zürich, Nr. 10293, 1993. Ref.: D. Vischer; Korref.: M. Boller).

  • Stevenson, R. J., M. L. Bothwell, R. L. Lowe & J. H. Thorp, 1996. Algal ecology: Freshwater benthic ecosystem. Academic Press, New York.

    Google Scholar 

  • Stock, M. S. & A. K. Ward, 1989. Establishment of a bedrock epilithic community in a small stream: microbial (algal and bacterial) metabolism and physical structure. Canadian Journal of Fisheries and Aquatic Sciences 46: 1874–1883.

    Article  Google Scholar 

  • Tonetto, A. F., R. Cardoso-Leite, C. K. Peres, P. D. C. Bispo & C. C. Z. Branco, 2014. The effects of habitat complexity and hydraulic conditions on the establishment of benthic stream macroalgae. Freshwater Biology 59: 1687–1694.

    Article  Google Scholar 

  • Urrea-Clos, G., E. García-Berthou & S. Sabater, 2014. Factors explaining the patterns of benthic chlorophyll-a distribution in a large agricultural Iberian watershed (Guadiana river). Ecological Indicators 36: 463–469.

    Article  CAS  Google Scholar 

  • Vandevivere, P. & P. Baveye, 1992. Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns. Soil Science Society of America Journal 56: 1–13.

    Article  Google Scholar 

  • Vandevivere, P., P. Baveye, D. S. Lozada & P. DeLeo, 1995. Microbial clogging of saturated soils and aquifer materials: Evaluation of mathematical models. Water Resources Research 31: 2173–2180.

    Article  Google Scholar 

  • Ward, J. V., 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.

    Article  Google Scholar 

  • Williams, D. D., 1980. Some relationships between stream benthos and substrate heterogeneity. Limnology and Oceanography 25: 166–172.

    Article  Google Scholar 

  • Ylla, I., C. Borrego, A. M. Romaní & S. Sabater, 2009. Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiology Ecology 69: 27–42.

    Article  CAS  Google Scholar 

  • Zeglin, L. H., 2015. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Frontiers in Microbiology 6: 454.

    Article  Google Scholar 

Download references

Acknowledgements

V. Ann thankfully acknowledges the Grants GL2011-30151-C02 and CGL2014-58760-C3-R from the Spanish Ministry of Economy and Competitiveness, and thanks Stefano Amalfitano for assistance with flow cytometric analyses. The same author received financial support from the European Commission (Erasmus Mundus project TECHNO). The authors also appreciate with thanks the comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vannak Ann.

Additional information

Handling editor: Stefano Amalfitano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ann, V., Freixa, A., Butturini, A. et al. Interplay between sediment properties and stream flow conditions influences surface sediment organic matter and microbial biomass in a Mediterranean river. Hydrobiologia 828, 199–212 (2019). https://doi.org/10.1007/s10750-018-3812-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3812-8

Keywords

Navigation