Log in

The effects of habitat complexity on periphyton biomass accumulation and taxonomic structure during colonization

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Habitat complexity plays a significant role in biological communities, but its effect on periphyton is still poorly understood. For example, the response of periphyton to changes in habitat relative to colonization time remains to be elucidated. Our hypothesis was that habitat complexity positively affects periphyton biomass, algal diversity, and change in species composition, while the response of periphyton to habitat complexity depends on colonization time. To test this hypothesis, we evaluated periphyton on artificial substrate distinct levels of habitat complexity at the intermediate (15 days) and advanced phases of colonization (30 days). Biomass, species richness, and diversity increased with level of structural complexity, but these attributes present significant difference only at the 15th day of colonization. In contrast, species composition changed with the increase of fractal dimension at both colonization times. Algal community response to distinct levels of structural habitat complexity was most significant at the 15th day of colonization. Our results showed that biomass, adaptive strategies groups, and taxonomic structure in periphyton were affected by habitat complexity, but that response was dependent on colonization time. Therefore, we concluded that colonization time is a factor that should be considered in assessing the effects of habitat complexity on periphyton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison, D. G., 2003. The biofilm matrix biofouling. School of Pharmacy and Pharmaceutical Sciences 19: 139–150.

    CAS  Google Scholar 

  • Algarte, V. M., L. Rodrigues, V. L. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722(1): 279–290.

    Article  Google Scholar 

  • Bicudo, C. E. M., C. F. Carmo, D. C. Bicudo, R. Henry, A. C. S. Pião, C. M. Santos & M. R. M. Lopes, 2002. Morfologia e morfometria de três reservatórios do PEFI. In Bicudo, D. C., M. C. Forti & C.E.M. Bicudo (orgs), Parque Estadual das Fontes do Ipiranga: unidade de conservação ameaçada pela urbanização de São Paulo. Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo: 143–160.

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego: 31–51.

    Chapter  Google Scholar 

  • Burkholder, J. M., 1996. Interactions of benthic algae with their substrata. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego: 253–297.

    Chapter  Google Scholar 

  • Brothers, S. M., S. Hilt, S. Meyer & J. Köhler, 2013. Plant community structure determines primary productivity in shallow, eutrophic lakes. Freshwater Biology 58(11): 2264–2276.

    CAS  Google Scholar 

  • Casartelli, M. R., G. J. Lavagnolli & C. Ferragut, 2016. Periphyton biomass accrual rate changes over the colonization process in a shallow mesotrophic reservoir. Acta Limnologica Brasiliensia 28: e9.

    Article  Google Scholar 

  • Connell, J. H. & R. O. Slatyer, 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111: 1119–1144.

    Article  Google Scholar 

  • Cottingham, K. L. & S. R. Carpenter, 1998. Population, community, and ecosystem variates as, ecological indicators: phytoplankton responses to whole-lake enrichment. Ecological Applications 8: 508–530.

    Article  Google Scholar 

  • Dibble, E. D. & S. M. Thomaz, 2009. Use of fractal dimension to assess habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. Journal of Freshwater Ecology 24: 93–102.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123(4): 569–581.

    Article  CAS  PubMed  Google Scholar 

  • Ferragut, C. & D. C. Bicudo, 2010. Periphytic algal community adaptive strategies in N and P enriched experiments in a tropical oligotrophic reservoir. Hydrobiologia 646: 295–309.

    Article  CAS  Google Scholar 

  • Ferreiro, N., A. Giorgi & C. Feijoó, 2014. Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquatic Ecology 47: 389–401.

    Article  Google Scholar 

  • Fonseca, B. M., C. Ferragut, A. Tucci, L. O. Crossetti, F. Ferrari, D. C. Bicudo, C. L. Sant’Anna & C. E. M. Bicudo, 2014. Biovolume de cianobactérias e algas de reservatórios tropicais do Brasil com diferentes estados tróficos. Hoehnea 41: 9–30.

    Article  Google Scholar 

  • Goldsborough, L. G. & G. G. C. Robinson, 1996. Pattern in wetlands. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego: 77–117.

    Chapter  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for physical and chemical analysis of freshwaters. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hillebrand, H. & U. Sommer, 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany 67(3): 221–236.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Jones, J. I., B. Moss, J. W. Eaton & J. O. Young, 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biology 43: 591–604.

    Article  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le-Cren, 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Titus Wilson & Son Ltda, Kendall.

    Google Scholar 

  • Magurran, A. E., 2004. Measuring biological diversity. Blackwell Science, Oxford.

    Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Mormul, R. P., S. M. Thomaz, A. M. Takeda & R. D. Behrend, 2011. Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica 43: 738–745.

    Article  Google Scholar 

  • Rangel, L. M., M. C. S. Soares, R. Paiva & L. H. S. Silva, 2016. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecological Indicators 64: 217–227.

    Article  Google Scholar 

  • Rasband, W., 2008. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland. http://rsb.info.nih.gov/ij/.

  • Roeselers, G., M. C. M. van Loosdrecht & G. Muyzer, 2008. Phototrophic biofilms and their potential applications. Journal of Applied Phycology 20: 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578(1): 97–112.

    Article  Google Scholar 

  • Santos, T. R., C. Ferragut & C. E. M. Bicudo, 2013. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hidrobiologia 714: 71–83.

    Article  CAS  Google Scholar 

  • Saravia, L. A., A. Giorgi & F. Momo, 2012. Multifractal spatial patterns and diversity in an ecological succession. PLoS ONE 7: e34096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll-a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    Article  CAS  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1960. A manual of seawater analysis. Bulletin Fisheries Research Board of Canada 125: 1–185.

    Google Scholar 

  • Sugihara, G. & R. May, 1990. Application of fractals in ecology. Trends in Ecology & Evolution 5: 79–86.

    Article  CAS  Google Scholar 

  • Taniguchi, H., S. Nakano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.

    Article  Google Scholar 

  • Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Tonetto, A. F., R. Cardoso-Leite, C. K. Peres, P. C. Bispo & C. C. Z. Branco, 2014. The effects of habitat complexity and hydraulic conditions on the establishment of benthic stream macroalgae. Freshwater Biology 59: 1687–1694.

    Article  Google Scholar 

  • Tokeshi, M. & S. Arakaki, 2012. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685: 27–47.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervolkomnung der quantitative phytoplankton: metodik. Internationale Vereinigung Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Valderrama, G. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MRC thanks FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo, Grant No. 2012/07366-8) for the Master of Science fellowship, and CF is grateful for the financial support (Grant No. 2009/52253-4). The authors are also grateful to all the students and technicians involved in the laboratory and fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ferragut.

Additional information

Handling editor: Judit Padisák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casartelli, M.R., Ferragut, C. The effects of habitat complexity on periphyton biomass accumulation and taxonomic structure during colonization. Hydrobiologia 807, 233–246 (2018). https://doi.org/10.1007/s10750-017-3396-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3396-8

Keywords

Navigation