Log in

Mangrove seedling freeze tolerance depends on salt marsh presence, species, salinity, and age

  • MANGROVES IN CHANGING ENVIRONMENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

With increasing global average temperatures reducing the frequency and severity of freeze events, species are undergoing range expansions. As a result, mangroves are expanding into higher latitudes previously dominated by salt marsh. The success of mangroves in these new habitats may vary based on seedling temperature tolerances, seedling age, interactions with existing salt marsh habitat, and other environmental stressors. To test this, we conducted three experiments on interactions between mangrove seedlings (Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa) (1 and 6 months old) and salt marsh species (Distichlis spicata and Salicornia virginica) under varying freeze occurrence and duration (0, 1, and 4 h at −5°C) across varying salinity gradients (5, 20, and 40 PSU). Laguncularia racemosa was the most susceptible to freezing conditions, followed by R. mangle and A. germinans at 100, 40, and 33% mortality, respectively. Salt marsh excluded A. germinans under freeze conditions, whereas L. racemosa only survived when salt marsh was present (reduced mortality by 60%). Increasing salinity showed a trend where the effects of salt marsh on A. germinans and L. racemosa were reduced and replaced, respectively, under freeze events. Age of seedlings also influenced susceptibility, where newly established seedlings were less susceptible to freeze conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, D. R., 2008. Model Based Inference in the Life Sciences: a Primer on Evidence. Springer, New York.

    Book  Google Scholar 

  • Araúja, M. B. & A. Rozenfield, 2014. The geographic scaling of biotic interactions. Ecography 37: 406–415.

    Google Scholar 

  • Armitage, A. R., W. E. Highfield, S. D. Brody & P. Louchouarn, 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10(5): e0125404. doi:10.1371/journal.pone.0125404

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball, M. C., 2002. Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees 16: 126–139.

    Article  Google Scholar 

  • Blois, J. L., P. L. Zarnetske, M. C. Fitzpatrick & S. Finnegan, 2013. Climate change and the past, present, and future of biotic interactions. Science 341: 499–504.

    Article  CAS  PubMed  Google Scholar 

  • Brooker, R. W., 2006. Plant-plant interactions and environmental change. New Phytologist 171: 271–284.

    Article  PubMed  Google Scholar 

  • Cavanaugh, K. C., J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez & I. C. Feller, 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111: 723–727.

    Article  CAS  Google Scholar 

  • Cavanuagh, K. C., J. D. Parker, S. C. Cook-Patton, I. C. Feller, A. P. Williams & J. R. Kellner, 2015. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology 21: 1928–1938.

    Article  Google Scholar 

  • Chapman, V. J. 1976. Mangrove Vegetation. J. Cramer, Vaduz, Germany

  • Chen, R. & R. R. Twilley, 1998. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. Journal of Ecology 86: 37–51.

    Article  Google Scholar 

  • Chen, I., J. K. Hill, R. Ohlemüller, D. B. Roy & C. D. Thomas, 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024–1026.

    Article  CAS  PubMed  Google Scholar 

  • Comeaux, R. S., M. A. Allison & T. S. Bianchi, 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.

    Article  CAS  Google Scholar 

  • Dawes, C. J., 1998. Marine Botany, 2nd ed. Wiley, New York.

    Google Scholar 

  • Doughty, C. D., J. A. Langley, W. C. Walker, R. Schaub & S. K. Chapman, 2016. Mangrove range expansion increases coastal wetland carbon storage. Estuaries and Coasts 36: 385–396.

    Article  Google Scholar 

  • Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa & N. Marba, 2013. The role of coastal plant communities for climate change mitigation and adapation. Nature Climate Change 3: 961–968.

    Article  CAS  Google Scholar 

  • Duke, N. C., M. C. Ball & J. C. Ellison, 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters 7: 27–47.

    Article  Google Scholar 

  • Ellis, W. L., J. W. Bowles, A. A. Erickson, N. Stafford, S. S. Bell & M. Thomas, 2006. Alteration of the chemical composition of mangrove (Laguncularia racemosa) leaf litter fall by freeze damage. Estuarine, Coastal and Shelf Science 68: 363–371.

    Article  CAS  Google Scholar 

  • Erwin, K. L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17: 71–84.

    Article  Google Scholar 

  • Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson & C. S. Holling, 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics 35: 557–581.

    Article  Google Scholar 

  • Friess, D. A., K. W. Krauss, E. M. Horstman, T. Balke, T. J. Bouma, D. Galli & E. L. Webb, 2012. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews 87: 346–366.

    Article  PubMed  Google Scholar 

  • Gilman, E. L., J. Ellison, N. C. Duke & C. Field, 2008. Threat to mangroves from climate change and adaptation options: a review. Aquatic Botany 89: 237–250.

    Article  Google Scholar 

  • Guo, H., Y. Zhang, Z. Lan & S. C. Pennings, 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology 19: 2765–2774.

    Article  PubMed  Google Scholar 

  • Helmuth, B., C. D. Harley, P. M. Halpin, M. O’Donnell, G. E. Hofmann & C. A. Blanchette, 2002. Climate change and latitudinal patterns of intertidal thermal stress. Science 298: 1015–1017.

    Article  CAS  PubMed  Google Scholar 

  • HilleRisLambers, J., M. A. Harsch, A. K. Ettinger, K. R. Ford & E. J. Theobald, 2013. How will biotic interactions influence climate change-induced range shifts? Annals of the New York Academy of Sciences 1297: 112–125.

    PubMed  Google Scholar 

  • Jentsch, A., J. Kreyling & C. Belerkuhnlein, 2007. A new generation of climate change experiments: events, not trends. Frontiers in Ecology and the Environment 5: 365–374.

    Article  Google Scholar 

  • Kelly, A. E. & M. L. Goulden, 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences 105: 11823–11826.

    Article  CAS  Google Scholar 

  • Krauss, K. W. & M. C. Ball, 2013. On the halophytic nature of mangroves. Trees 27: 7–11.

    Article  Google Scholar 

  • Krauss, K. W., C. E. Lovelock, K. L. McKee, L. López-Hoffman, S. M. L. Ewe & W. P. Sousa, 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105–127.

    Article  Google Scholar 

  • Krauss, K. W., A. S. From, T. W. Doyle, T. J. Doyle & M. J. Barry, 2011. Sea-level rise and landscape changes influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. Journal of Coastal Conservation 15: 629–638.

    Article  Google Scholar 

  • le Roux, P. C., R. Virtanen, R. K. Heikkinen & M. Luoto, 2012. Biotic interactions affect the elevational ranges of high-latitude plant species. Ecography 35: 1048–1056.

    Article  Google Scholar 

  • le Roux, P. C., L. Pellissier, M. S. Wisz & M. Luoto, 2014. Incorporating dominant species as proxies for biotic interactions strengthens plant community models. Journal of Ecology 102: 767–775.

    Article  Google Scholar 

  • López-Hoffman, L., J. L. DeNoyer, I. E. Monroe, R. Shaftel, N. P. R. Anten, M. Martínez-Ramos & D. D. Ackerly, 2006. Mangrove seedling net photosynthesis, growth, and survivorship are interactively affected by salinity and light. Biotropica 38: 606–616.

    Article  Google Scholar 

  • López-Hoffman, L., N. P. R. Anten, M. Martínez-Ramos & D. D. Ackerly, 2007. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 150: 545–556.

    Article  PubMed  Google Scholar 

  • Lugo, A. E. & C. Patterson Zucca, 1977. The impact of low temperature stress on mangrove structure and growth. Tropical Ecology 18: 149–161.

    Google Scholar 

  • Madrid, E. N., A. R. Armitage & J. López-Portillo, 2014. Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico. Frontiers in Plant Science 5: 503. doi:10.3389/fpls.2014.00503

    Article  PubMed  PubMed Central  Google Scholar 

  • Markley, J. L., C. McMillan & G. A. Thompson Jr., 1982. Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Canadian Journal of Botany 60: 2704–2715.

    Article  CAS  Google Scholar 

  • McKee, K.L., 1993. Determinants of mangrove species distribution in neotropical forests: biotic and abiotic factors affecting seedlings survival and growth (Rhizophora mangle, Avicennia germinans, Laguncularia racemosa). PhD Dissertation. Louisiana State University, Baton Rouge, Louisiana, USA.

  • McKee, K. L. & J. E. Rooth, 2008. Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 971–984.

    Article  Google Scholar 

  • McKee, K. L., I. A. Mendelssohn & M. D. Materne, 2004. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography 13: 65–73.

    Article  Google Scholar 

  • McKee, K. L., J. E. Rooth & I. C. Feller, 2007. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecological Applications 17: 1678–1693.

    Article  PubMed  Google Scholar 

  • McMillan, C. & C. L. Sherrod, 1986. The chilling tolerance of black mangrove, Avicennia germinans, from the Gulf of Mexico coast of Texas, Louisiana and Florida. Contributions in Marine Science 29: 9–16.

    Google Scholar 

  • Milbrandt, E. C. & M. L. Tinsley, 2006. The role of saltwort (Batis maritima) on mangrove forest succession. Hydrobiologia 568: 369–377.

    Article  Google Scholar 

  • Osland, M. J., N. Enwright, R. H. Day & T. W. Doyle, 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology 19: 1482–1494.

    Article  PubMed  Google Scholar 

  • Osland, M. J., R. H. Day, A. S. From, M. L. McCoy, J. L. McLeod & J. J. Kelleway, 2015. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes. Ecosphere 6: 160. doi:10.1890/ES15-00042.1

    Article  Google Scholar 

  • Pennings, S. C., E. R. Selig, L. T. Houser & M. D. Bertness, 2003. Geographic variation in positive and negative interactions among salt marsh plants. Ecology 84: 1527–1538.

    Article  Google Scholar 

  • Peterson, J. M. & S. S. Bell, 2012. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone. Ecology 93: 1648–1658.

    Article  PubMed  Google Scholar 

  • Pickens, C.N., 2012. Influence of climatic change on the ecophysiology and restoration ecology of black mangrove (Avicennia germinans (L.)L.). PhD Dissertation. University of Louisiana, Lafayette, Louisiana, USA.

  • Pickens, C. N. & M. W. Hester, 2011. Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion. Estuaries and Coasts 34: 824–830.

    Article  Google Scholar 

  • Rabinowitz, D., 1978. Dispersal properties of mangrove propagules. Biotropica 10: 47–57.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan & H. Heijnis, 2005. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence, and sea level rise. Estuaries 28: 551–559.

    Article  Google Scholar 

  • Rogers, K., K. M. Wilton & N. Saintilan, 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science 66: 559–569.

    Article  Google Scholar 

  • Ross, M. S., P. L. Ruiz, J. P. Sah & E. J. Hanan, 2009. Chilling damage in a changing climate in coastal landscapes of the subtropical zone: a case study from south Florida. Global Change Biology 15: 1817–1832.

    Article  Google Scholar 

  • Saenger, P., 2002. Mangrove Ecology, Silviculture and Conservation. Springer Science, Dordrecht.

    Book  Google Scholar 

  • Saintilan, N. & K. Rogers, 2015. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytologist 205: 1062–1070.

    Article  PubMed  Google Scholar 

  • Saintilan, N. & R. J. Williams, 1999. Mangrove transgression into saltmarsh environments in south-east Australia. Global Ecology and Biogeography 8: 117–124.

    Article  Google Scholar 

  • Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.

    Article  PubMed  Google Scholar 

  • Sherrod, C. L. & C. McMillan, 1985. The distributional history and ecology of mangrove vegetation along the northern Gulf of Mexico coastal region. Contributions to Marine Science 28: 129–140.

    Google Scholar 

  • Sherrod, C. L., D. L. Hockaday & C. McMillan, 1986. Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas. Contributions to Marine Science 29: 27–36.

    Google Scholar 

  • Simpson, L. T., I. C. Feller & S. K. Chapman, 2013. Effects of competition and nutrient enrichment on A. germinans in the salt marsh-mangrove ecotone. Aquatic Botany 104: 55–59.

    Article  Google Scholar 

  • Sobrado, M. A., 2006. Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytologist 173: 584–591.

    Article  Google Scholar 

  • Stevens, P. W., S. L. Fox & C. L. Montague, 2006. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management 14: 435–444.

    Article  Google Scholar 

  • Stuart, S. A., B. Choat, K. C. Marin, N. M. Holbrook & M. C. Ball, 2007. The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist 3: 576–583.

    Article  Google Scholar 

  • Sturm, M., C. Racine & K. Tape, 2001. Climate change: Increasing shrub abundance in the Arctic. Nature 411: 546–547.

    Article  CAS  PubMed  Google Scholar 

  • Urban, M. C., P. L. Zarnetske & D. K. Skelly, 2013. Moving forward: dispersal and species interactions determine biotic responses to climate change. Annals of the New York Academy Sciences 1297: 44–60.

    Google Scholar 

  • Verslues, P. E., M. Agarwal, S. Katiyar-Agarwal, J. Zhu & J. Zhu, 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plan Journal 45: 523–539.

    Article  CAS  Google Scholar 

  • Wernberg, T., D. A. Smale & M. S. Thomsen, 2012. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology 18: 1491–1498.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance of Kathryn A. Tiling and the Semester by the Sea class of 2013. We would also like to thank Ilka C. Feller, Donna J. Devlin, Uta Berger, and Marguerite Koch for their input and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn A. Coldren.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess & R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coldren, G.A., Proffitt, C.E. Mangrove seedling freeze tolerance depends on salt marsh presence, species, salinity, and age. Hydrobiologia 803, 159–171 (2017). https://doi.org/10.1007/s10750-017-3175-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3175-6

Keywords

Navigation