Log in

Elucidating the potential squid habitat responses in the central North Pacific to the recent ENSO flavors

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of the El Niño Southern Oscillation (ENSO)-mediated environmental changes to marine resources were long recognized; however, species-specific responses were also reported to vary, possibly more so, under the emerging event-to-event diversity of the ENSO conditions. Hence, the objective of this study is to characterize the potential impacts of the ENSO-regulated environmental variability to squid habitat in the central North Pacific under the different ENSO flavors, using habitat models developed from at least a decade of fishery-dependent dataset and environmental parameters. Our findings revealed that the potential squid habitats were largely influenced by ENSO-forced environmental changes during the squid’s spawning and nursery periods, resulting in substantial reduction/enhancement of available habitats in the succeeding summers of Central Pacific El Niño/La Niña, where the latter led to an expansion of favorable spawning and nursery grounds. However, the autumn–winter periods of weaker and short-lived Eastern Pacific El Niño showed elevated potential habitats due to minimal sea surface temperature drop and close proximity of spawning and nursery grounds to optimal feeding environments. The quick, albeit variable, squids’ responses to ENSO flavors accentuate their promising potential as ecological beacons under climate changes, aiding the development of adaptive management strategies for commercially exploited fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alabia, I. D., S.-I. Saitoh, R. Mugo, H. Igarashi, Y. Ishikawa, N. Usui, M. Kamachi, T. Awaji & M. Seito, 2015a. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific. Fisheries Oceanography 24(2): 190–203.

    Article  Google Scholar 

  • Alabia, I. D., S.-I. Saitoh, R. Mugo, H. Igarashi, Y. Ishikawa, N. Usui, M. Kamachi, T. Awaji & M. Seito, 2015b. Identifying pelagic habitat hotspots of neon flying squid in the temperate waters of the central North Pacific. PLoS One 10(11): e0142885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alabia, I. D., S.-I. Saitoh, H. Igarashi, Y. Ishikawa, N. Usui, M. Kamachi, T. Awaji & M. Seito, 2015c. Future projected impacts of ocean warming to potential squid habitat in western and central North Pacific. ICES Journal of Marine Science. doi:10.1093/icesjms/fsv203.

    Google Scholar 

  • Anderson, C. I. H. & P. G. Rodhouse, 2001. Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fisheries Research 54(1): 133–143.

    Article  Google Scholar 

  • Ashok, K. & T. Yamagata, 2009. Climate change: the El Nino with a difference. Nature 461(7263): 481–484.

    Article  CAS  PubMed  Google Scholar 

  • Ayers, J. M. & M. S. Lozier, 2010. Physical controls on the seasonal migration of the North Pacific transition zone chlorophyll front. Journal of Geophysical Research: Oceans 115(C5): 1–11.

    Article  Google Scholar 

  • Bower, J. R. & T. Ichii, 2005. The red flying squid (Ommastrephes bartramii): a review of recent research and the fishery in Japan. Fisheries Research 76(1): 39–55.

    Article  Google Scholar 

  • Brodeur, R. D., S. Ralston, R. L. Emmett, M. Trudel, T. D. Auth & A. J. Phillips, 2006. Anomalous pelagic nekton abundance, distribution, and apparent recruitment in the northern California Current in 2004 and 2005. Geophysical Research Letters 33(22): L22S08.

    Article  Google Scholar 

  • Cao, J., X. J. Chen & Y. Chen, 2009. Influence of surface oceanographic variability on abundance of the western winter–spring cohort of neon flying squid Ommastrephes bartramii in the NW Pacific Ocean. Marine Ecology Progress Series 381: 119–127.

    Article  Google Scholar 

  • Capotondi, A., A. T. Wittenberg, M. Newman, E. Di Lorenzo, J.-Y. Yu, P. Braconnot, J. Cole, B. Dewitte, B. Giese, E. Guilyardi, F.-F. **, K. Karnauskas, B. Kirtman, T. Lee, N. Schneider, Y. Xue & S.-W. Yeh, 2014. Understanding ENSO diversity. Bulletin of the American Meteorological Society 96(6): 921–938.

    Article  Google Scholar 

  • Chen, X. J., X. H. Zhao & Y. Chen, 2007. Influence of El Niño/La Niña on the western winter–spring cohort of neon flying squid (Ommastrephes bartramii) in the northwestern Pacific Ocean. ICES Journal of Marine Science 64(6): 1152–1160.

    Google Scholar 

  • Coll, M., J. Navarro, R. J. Olson & V. Christensen, 2013. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models. Deep Sea Research Part II: Topical Studies in Oceanography 95: 21–36.

    Article  Google Scholar 

  • Doney, S. C., M. Ruckelshaus, J. Emmett Duffy, J. P. Barry, F. Chan, C. A. English, H. M. Galindo, J. M. Grebmeier, A. B. Hollowed, N. Knowlton, J. Polovina, N. N. Rabalais, W. J. Sydeman & L. D. Talley, 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4(1): 11–37.

    Article  PubMed  Google Scholar 

  • Forney, K., M. Ferguson, E. Becker, P. Fiedler, J. Redfern, J. Barlow, I. Vilchis & L. Ballance, 2012. Habitat-based spatial models of cetacean density in the eastern Pacific Ocean. Endangered Species Research 16(2): 113–133.

    Article  Google Scholar 

  • Godø, O. R., A. Samuelsen, G. J. Macaulay, R. Patel, S. S. Hjøllo, J. Horne, S. Kaartvedt & J. A. Johannessen, 2012. Mesoscale eddies are oases for higher trophic marine life. PLoS One 7(1): e30161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hastie, T. & R. Tibshirani, 1986. Generalized additive models: rejoinder. Statistical Science 1(3):314–318. doi:10.1214/ss/1177013609.

    Article  Google Scholar 

  • Hoegh-Guldberg, O. & J. F. Bruno, 2010. The impact of climate change on the world’s marine ecosystems. Science 328(5985): 1523–1528.

    Article  CAS  PubMed  Google Scholar 

  • Holmgren, M., M. Scheffer, E. Ezcurra, J. R. Gutiérrez & G. M. J. Mohren, 2001. El Niño effects on the dynamics of terrestrial ecosystems. Trends in Ecology and Evolution 16(2): 89–94.

    Article  PubMed  Google Scholar 

  • Howell, E. A., D. R. Hawn & J. J. Polovina, 2010. Spatiotemporal variability in bigeye tuna (Thunnus obesus) dive behavior in the central North Pacific Ocean. Progress in Oceanography 86(1–2): 81–93.

    Article  Google Scholar 

  • Huang, B., V. F. Banzon, E. Freeman, J. Lawrimore, W. Liu, T. C. Peterson, T. M. Smith, P. W. Thorne, S. D. Woodruff & H.-M. Zhang, 2015. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. Journal of Climate 28(3): 911–930.

    Article  Google Scholar 

  • Ichii, T., K. Mahapatra, T. Watanabe, A. Yatsu, D. Inagake & Y. Okada, 2002. Occurrence of jumbo flying squid Dosidicus gigas aggregations associated with the countercurrent ridge off the Costa Rica Dome during 1997 El Niño and 1999 La Niña. Marine Ecology Progress Series 231: 151–166.

    Article  Google Scholar 

  • Ichii, T., K. Mahapatra, H. Okamura & Y. Okada, 2006. Stock assessment of the autumn cohort of neon flying squid (Ommastrephes bartramii) in the North Pacific based on past large-scale high seas driftnet fishery data. Fisheries Research 78(2–3): 286–297.

    Article  Google Scholar 

  • Ichii, T., K. Mahapatra, M. Sakai & Y. Okada, 2009. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean. Marine Ecology Progress Series 378: 1–11.

    Article  Google Scholar 

  • Ichii, T., K. Mahapatra, M. Sakai, T. Wakabayashi, H. Okamura, H. Igarashi, D. Inagake & Y. Okada, 2011. Changes in abundance of the neon flying squid Ommastrephes bartramii in relation to climate change in the central North Pacific Ocean. Marine Ecology Progress Series 441: 151–164.

    Article  Google Scholar 

  • Igarashi, H., T. Ichii, M. Sakai, Y. Ishikawa, T. Toyoda, S. Masuda, N. Sugiura, K. Mahapatra & T. Awaji, 2015. Possible link between interannual variation of neon flying squid (Ommastrephes bartramii) abundance in the North Pacific and the climate phase shift in 1998/1999. Progress in Oceanography. doi:10.1016/j.pocean.2015.03.008.

    Google Scholar 

  • Kug, J.-S., F.-F. ** & S.-I. An, 2009. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. Journal of Climate 22(6): 1499–1515.

    Article  Google Scholar 

  • Latif, M. & N. S. Keenlyside, 2009. El Niño/Southern Oscillation response to global warming. Proceedings of the National Academy of Sciences of USA 106(49): 20578–20583.

    Article  CAS  Google Scholar 

  • Martins, R. S. & J. A. A. Perez, 2007. The ecology of loliginid squid in shallow waters around Santa Catarina Island, southern Brazil. Bulletin of Marine Science 80(1): 125–145.

    Google Scholar 

  • McPhaden, M. J., 1999. Genesis and evolution of the 1997–98 El Niño. Science 283(5404): 950–954.

    Article  CAS  PubMed  Google Scholar 

  • Mori, J., T. Kubodera & N. Baba, 2001. Squid in the diet of northern fur seals, Callorhinus ursinus, caught in the western and central North Pacific Ocean. Fisheries Research 52(1–2): 91–97.

    Article  Google Scholar 

  • Mugo, R. M., S.-I. Saitoh, F. Takahashi, A. Nihira & T. Kuroyama, 2014. Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: a proof of concept. Deep Sea Research Part II: Topical Studies in Oceanography 107: 29–39.

    Article  CAS  Google Scholar 

  • Muhling, B. A., S.-K. Lee, J. T. Lamkin & Y. Liu, 2011. Predicting the effects of climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf of Mexico. ICES Journal of Marine Science 68(6): 1051–1062.

    Article  Google Scholar 

  • Nishikawa, H., H. Igarashi, Y. Ishikawa, M. Sakai, Y. Kato, M. Ebina, N. Usui, M. Kamachi & T. Awaji, 2014. Impact of paralarvae and juveniles feeding environment on the neon flying squid (Ommastrephes bartramii) winter–spring cohort stock. Fisheries Oceanography 23(4): 289–303.

    Article  Google Scholar 

  • O’Dor, R. K., 1998. Can understanding squid life-history strategies and recruitment improve management? South African Journal of Marine Science 20(1): 193–206.

    Article  Google Scholar 

  • Pierce, G., V. Valavanis, A. Guerra, P. Jereb, L. Orsi-Relini, J. Bellido, I. Katara, U. Piatkowski, J. Pereira, E. Balguerias, I. Sobrino, E. Lefkaditou, J. Wang, M. Santurtun, P. Boyle, L. Hastie, C. MacLeod, J. Smith, M. Viana, A. González & A. Zuur, 2008. A review of cephalopod–environment interactions in European seas. In Valavanis, V. (ed.), Essential Fish Habitat Map** in the Mediterranean. Developments in Hydrobiology, Vol. 203 (pp 49–70), Springer, Netherlands.

  • Polovina, J. J., E. Howell, D. R. Kobayashi & M. P. Seki, 2001. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography 49(1–4): 469–483.

    Article  Google Scholar 

  • R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Robinson, C. J., J. Gómez-Gutiérrez & D. A. S. de León, 2013. Jumbo squid (Dosidicus gigas) landings in the Gulf of California related to remotely sensed SST and concentrations of chlorophyll a (1998–2012). Fisheries Research 137: 97–103.

    Article  Google Scholar 

  • Rodhouse, P. G., 2001. Managing and forecasting squid fisheries in variable environments. Fisheries Research 54(1): 3–8.

    Article  Google Scholar 

  • Rosa, A. L., J. Yamamoto & Y. Sakurai, 2011. Effects of environmental variability on the spawning areas, catch, and recruitment of the Japanese common squid, Todarodes pacificus (Cephalopoda: Ommastrephidae), from the 1970s to the 2000s. ICES Journal of Marine Science: Journal du Conseil 68(6): 1114–1121.

    Article  Google Scholar 

  • Sakurai, Y., H. Kiyofuji, S. Saitoh, T. Goto & Y. Hiyama, 2000. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES Journal of Marine Science 57(1): 24–30.

    Article  Google Scholar 

  • Sasaoka, K., S.-I. Saitoh, I. Asanuma, K. Imai, M. Honda, Y. Nojiri & T. Saino, 2002. Temporal and spatial variability of chlorophyll-a in the western subarctic Pacific determined from satellite and ship observations from 1997 to 1999. Deep Sea Research Part II: Topical Studies in Oceanography 49(24–25): 5557–5576.

    Article  CAS  Google Scholar 

  • Seki, M. P., 1993. The role of neon flying squid, Ommastrephes bartramii, in the North Pacific pelagic food web. Bulletin of the International North Pacific Commission 53: 207–215.

    Google Scholar 

  • Stuecker, M. F., A. Timmermann, F.-F. **, S. McGregor & H.-L. Ren, 2013. A combination mode of the annual cycle and the El Nino/Southern Oscillation. Nature Geoscience 6(7): 540–544.

    Article  CAS  Google Scholar 

  • Thiaw, M., D. Gascuel, D. Thiao, O. T. Thiaw & D. Jouffre, 2011. Analysing environmental and fishing effects on a short-lived species stock: the dynamics of the octopus Octopus vulgaris population in Senegalese waters. African Journal of Marine Science 33(2): 209–222.

    Article  Google Scholar 

  • Tian, Y., K. Nashida & H. Sakaji, 2013. Synchrony in the abundance trend of spear squid Loligo bleekeri in the Japan Sea and the Pacific Ocean with special reference to the latitudinal differences in response to the climate regime shift. ICES Journal of Marine Science. doi:10.1093/icesjms/fst015.

    Google Scholar 

  • Usui, N., S. Ishizaki, Y. Fujii, H. Tsu**o, T. Yasuda & M. Kamachi, 2006. Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Advances in Space Research 37(4): 806–822.

    Article  Google Scholar 

  • Vijai, D., M. Sakai, Y. Kamei & Y. Sakurai, 2014. Spawning pattern of the neon fling squid Ommastrephes bartramii (Cephalopoda: Oegopsida) around the Hawaiian Islands. Scientia Marina 78(4): 9.

    Article  Google Scholar 

  • Waluda, C. M. & P. G. Rodhouse, 2006. Remotely sensed mesoscale oceanography of the Central Eastern Pacific and recruitment variability in Dosidicus gigas. Marine Ecology Progress Series 310: 25–32.

    Article  Google Scholar 

  • Waluda, C., P. Rodhouse, G. Podestá, P. Trathan & G. Pierce, 2001. Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Marine Biology 139(4): 671–679.

    Article  Google Scholar 

  • Wang, H.-J., R.-H. Zhang, J. Cole & F. Chavez, 1999. El Niño and the related phenomenon Southern Oscillation (ENSO): the largest signal in interannual climate variation. Proceedings of the National Academy of Sciences of USA 96(20): 11071–11072.

    Article  CAS  Google Scholar 

  • Watanabe, H., T. Kubodera, T. Ichii & S. Kawahara, 2004. Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Marine Ecology Progress Series 266: 173–184.

    Article  Google Scholar 

  • Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis & F. Wobbe, 2013. Generic map** tools: improved version released. EOS, Transactions American Geophysical Union 94(45): 409–410.

    Article  Google Scholar 

  • Wood, S. N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73(1): 3–36.

    Article  Google Scholar 

  • Yatsu, A., S. Midorikawa, T. Shimada & Y. Uozumi, 1997. Age and growth of the neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean. Fisheries Research 29(3): 257–270.

    Article  Google Scholar 

  • Yatsu, A., N. Mochioka, K. Morishita & H. Toh, 1998. Strontium/calcium ratios in statoliths of the neon flying squid, Ommastrephes bartramii (Cephalopoda), in the North Pacific Ocean. Marine Biology 131(2): 275–282.

    Article  CAS  Google Scholar 

  • Yu, W., X. Chen, Q. Yi, Y. Chen & Y. Zhang, 2015. Variability of suitable habitat of western winter–spring cohort for neon flying squid in the northwest Pacific under anomalous environments. PLoS One 10(4): e0122997.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research on Climate Change Adaptation (RECCA) Project of the Grant-in-Aid from Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT). The authors are also grateful to Aomori Prefectural Industrial Technology Research Center for providing the squid fishery data and NOAA coast watch for environmental data used in analyses. The authors also thank Cesar L. Villanoy for very helpful discussion on correlation and time series analyses. We are equally grateful to the referees for the constructive comments that significantly improved the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene D. Alabia.

Additional information

Handling Editor: Vasilis Valavanis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alabia, I.D., Saitoh, SI., Hirawake, T. et al. Elucidating the potential squid habitat responses in the central North Pacific to the recent ENSO flavors. Hydrobiologia 772, 215–227 (2016). https://doi.org/10.1007/s10750-016-2662-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2662-5

Keywords

Navigation