Log in

Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Clonal plants benefit from the ability to translocate resources among interconnected ramets through clonal integration to colonise ubiquitous heterogeneous habitats, which may contribute to the invasiveness of exotic clonal plants. To test this hypothesis, a greenhouse experiment was conducted to investigate the effects of clonal integration on a non-native clonal plant, Myriophyllum aquaticum, subjected to spatial and temporal heterogeneity of water supply. The daughter ramets were grown with stolon connections either severed from or connected to the mother plant and subjected to different amounts or frequencies of water supply. Clonal integration significantly improved growth and photosynthetic performance of daughter ramets that were exposed to spatial and temporal heterogeneity of water supply. Biomass allocation to roots of offspring ramets changed with water supply to enhance the capacity for water uptake. The decrease of the maximum quantum yield of photosystem II (F v/F m) as a function of reduced water supply was greatly alleviated by stolon connection. Moreover, clonal integration facilitated stabilisation of foliar N concentration and C/N ratio to support healthy growth of the ramets. These results suggest that clonal integration may facilitate invasion of M. aquaticum when subjected to heterogeneity in resource supply under ever-changing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alpert, P., 1996. Nutrient sharing in natural clonal fragments of Fragaria chiloensis. Journal of Ecology 84: 395–406.

    Article  Google Scholar 

  • Alpert, P., 1999. Clonal integration in Fragaria chiloensis differs between populations: ramets from grassland are selfish. Oecologia 120: 69–76.

    Article  Google Scholar 

  • Aston, H. I., 1977. Appendix 1: The Water Hyainth (Eichhornia crassipes). Aquatic Plants of Australia. Melbourne University Press, Melbourne: 333–339.

  • Barnes, M., C. L. Jerde, D. Keller, W. L. Chadderton, J. G. Howeth & D. M. Lodge, 2013. Viability of aquatic plant fragments following desiccation. Invasive Plant Science and Management 6(2): 320–325.

  • Björkman, O. & B. Demmig, 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504.

    Article  Google Scholar 

  • Bryant, J. P., S. Chapin & D. R. Klein, 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.

    Article  CAS  Google Scholar 

  • Champion, P. D. & J. S. Clayton, 2000. Border Control for Potential Aquatic Weeds. Department of Conservation, Wellington, New Zealand.

    Google Scholar 

  • Chidumayo, E. N., 2006. Fitness implications of clonal integration and leaf dynamics in a stoloniferous herb, Nelsonia canescens (Lam.) Spreng (Nelsoniaceae). Evolutionary Ecology 20: 59–73.

    Article  Google Scholar 

  • Evans, J. P. & S. Whitney, 1992. Clonal integration across a salt gradient by a nonhalophyte, Hydrocotyle bonariensis (Apiaceae). American Journal of Botany 79: 1344–1347.

    Article  Google Scholar 

  • Farley, R. A. & A. H. Fitter, 1999. Temporal and spatial variation in soil resources in a deciduous woodland. Journal of Ecology 87: 688–696.

    Article  Google Scholar 

  • Fay, P. A., J. D. Carlisle, A. K. Knapp, J. M. Blair & S. L. Collins, 2003. Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137: 245–251.

    Article  PubMed  Google Scholar 

  • Feng, Y. L., Y. B. Lei, R. F. Wang, R. M. Callaway, A. Valiente-Banuet, Inderjit, Y. P. Li & Y. L. Zheng, 2009. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences 106: 1853–1856.

  • Gordon, D. R., C. A. Gantz, C. L. Jerde, W. L. Chadderton, R. P. Keller & P. D. Champion, 2012. Weed risk assessment for aquatic plants: modification of a New Zealand system for the United States. PLoS one 7(7): e40031.

    Article  PubMed  CAS  Google Scholar 

  • Grace, J. B., 1993. The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany 44: 159–180.

    Article  Google Scholar 

  • Han, W. X., J. Y. Fang, P. B. Reich, F. I. Woodsward & Z. H. Wang, 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters 14: 788–796.

    Article  PubMed  CAS  Google Scholar 

  • Hartnett, D. C. & F. A. Bazzaz, 1985. The integration of neighbourhood effects by clonal genets of Solidago canadensis. Journal of Ecology 73: 415–428.

    Article  Google Scholar 

  • Herben, T., 2004. Physiological integration affects growth form and competitive ability in clonal plants. Evolutionary Ecology 18: 493–520.

    Article  Google Scholar 

  • Hussner, A., C. Meyer & J. Busch, 2009. The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Research 49: 73–80.

    Article  CAS  Google Scholar 

  • Hutchings, M. J. & D. K. Wijesinghe, 1997. Patchy habitats, division of labour and growth dividends in clonal plants. Trends in Ecology & Evolution 12: 390–394.

    Article  CAS  Google Scholar 

  • IPCC 2007 Climate change, 2007. Impacts, Adaptation and Vulnerability Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report Summary for Policymakers. Cambridge University Press, Cambridge, and New York

  • James, S. E., M. Pärtel, S. D. Wilson & D. A. Peltzer, 2003. Temporal heterogeneity of soil moisture in grassland and forest. Journal of Ecology 91: 234–239.

    Article  Google Scholar 

  • Julien, M. H. & A. S. Bourne, 1988. Alligator weed is spreading in Australia. Plant Protection Quarterly 3: 91–96.

    Google Scholar 

  • Kolar, C. S. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology & Evolution 16: 199–204.

    Article  Google Scholar 

  • Lambers, H., F. S. I. I. I. Chapin & T. L. Pons, 1998. Plant Physiological Ecology. Springer, New York.

    Book  Google Scholar 

  • Liu, J., M. Dong, S. Miao, Z. Li, M. Song & R. Wang, 2006. Invasive alien plants in China: role of clonality and geographical origin. Biological Invasions 8: 1461–1470.

    Article  Google Scholar 

  • Lodge, D. M., 2010. It’s the water, stupid! BioScience 60(1): 6–7.

    Article  Google Scholar 

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Madsen, J. D., 1991. Resource allocation at the individual plant level. Aquatic Botany 41: 67–86.

    Article  Google Scholar 

  • Maestre, F. T. & J. F. Reynolds, 2007. Amount or pattern? Grassland responses to the heterogeneity and availability of two key resources. Ecology 88: 501–511.

    Article  PubMed  Google Scholar 

  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. Aademic Press, New York.

    Google Scholar 

  • Maurer, D. A. & J. B. Zedler, 2002. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131: 279–288.

    Article  Google Scholar 

  • Moola, F. M. & L. Vasseur, 2009. The importance of clonal growth to the recovery of Gaultheria procumbens L. (Ericaceae) after forest disturbance. Plant Ecology 201: 319–337.

    Article  Google Scholar 

  • Murphy, G. P. & S. A. Dudley, 2007. Above- and below-ground competition cues elicit independent responses. Journal of Ecology 95: 261–272.

    Article  Google Scholar 

  • Novoplansky, A. & D. E. Goldberg, 2001. Effects of water pulsing on individual performance and competitive hierarchies in plants. Journal of Vegetation Science 12: 199–208.

    Article  Google Scholar 

  • Peltzer, D. A., 2002. Does clonal integration improve competitive ability? A test using aspen (Populus tremuloides [Salicaceae]) invasion into prairie. American Journal of Botany 89: 494–499.

    Article  PubMed  Google Scholar 

  • Pennings, S. C. & R. M. Callaway, 2000. The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology 81: 709–716.

    Article  Google Scholar 

  • Piao, S. L., P. Ciais, Y. Huang, Z. H. Shen, S. S. Peng, et al., 2010. The impacts of climate change on water resources and agriculture in China. Nature 407: 43–51.

    Article  Google Scholar 

  • Roiloa, S. R. & R. Retuerto, 2006. Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Annals of Botany 98: 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  • Roiloa, S. R. & R. Retuerto, 2007. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environmental and Experimental Botany 61: 1–9.

    Article  Google Scholar 

  • Schreiber, U., W. Bilger, H. Hormann & C. Neubauer, 1998. Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In Raghavendra, A. S. (ed.), Photosynthesis: A Comprehensive Treatise. Cambridge University Press, Cambridge: 320–336.

    Google Scholar 

  • Sheppard, A. W., R. H. Shaw & R. Sforza, 2005. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities regulations and other barriers to adoption. Weed Research 46: 93–117.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, New York.

    Google Scholar 

  • Stuefer, J. F., H. D. Kroon & H. J. During, 1996. Exploitation of environmental heterogeneity by spatial division of labor in a clonal plant. Functional Ecology 10: 328–334.

    Article  Google Scholar 

  • Sutton, D. L., 1985. Biology and ecology of Myriophyllum aquaticum. Proceeding, 1st International Symposium on Watermilfoil (Myriophyllum spicatum) and Related Haloragaceae Species. Vancouver, B.C: 59–71.

  • Sytsma, M. D. & L. W. J. Anderson, 1993a. Biomass, nitrogen, and phosphorus allocation in parrotfeather (Myriophyllum aquaticum). Journal of Aquatic Plant Management 31: 244–248.

    Google Scholar 

  • Sytsma, M. D. & L. W. J. Anderson, 1993b. Transpiration by an emergent macrophyte: source of water and implications for nutrient supply. Hydrobiologia 271: 97–108.

    Article  Google Scholar 

  • Thiébaut, G., 2007. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biological Invasions 9: 1–12.

    Article  Google Scholar 

  • Timmons, F. L. & D. L. Klingman, 1958. Control of aquatic and bank weeds. Soil Conservation 24: 102–107.

    Google Scholar 

  • Titus, J. E. & J. H. Andorfer, 1996. Effects of CO2 enrichment on mineral accumulation and nitrogen relations in a submerged macrophyte. Freshwater Biology 36(3): 661–671.

    Article  Google Scholar 

  • Tremmel, D. C. & F. A. Bazzaz, 1995. Plant architecture and allocation in different neighborhoods: implications for competitive success. Ecology 76: 262–271.

    Article  Google Scholar 

  • Wang, N., F. H. Yu, P. X. Li, W. H. He, F. H. Liu, J. M. Liu & M. Dong, 2008. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Annals of Botany 101: 671–678.

    Article  PubMed  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2011a. Comparative effects of water level variations on growth characteristics of Myriophyllum aquaticum. Weed Research 51: 386–393.

    Article  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2011b. Influences of water column nutrient loading on growth characteristics of the invasive aquatic macrophyte Myriophyllum aquaticum (Vell.) Verdc. Hydrobiologia 665: 93–105.

    Article  CAS  Google Scholar 

  • Wersal, R. M., J. C. Cheshier, J. D. Madsen & P. D. Gerard, 2011. Phenology, starch allocation, and environmental effects on Myriophyllum aquaticum. Aquatic Botany 95: 194–199.

    Article  Google Scholar 

  • Willby, N. J., 2007. Managing invasive aquatic plants: problems and prospects. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 659–665.

    Article  Google Scholar 

  • **ao, K. Y., D. Yu & J. W. Wang, 2006. Habitat selection in spatially heterogeneous environments: a test for forging behaviour in the clonal submerged macrophyte Vallisneria spiralis. Freshwater Biology 51: 1552–1559.

    Article  Google Scholar 

  • **ao, K. Y., D. Yu, L. G. Wang & Y. Q. Han, 2011. Physiological integration helps a clonal macrophyte spread into competitive environments and coexist with other species. Aquatic Botany 95: 249–253.

    Article  Google Scholar 

  • **e, Y., Z. Y. Li, W. P. Gregg & D. M. Li, 2001. Invasive species in China – an overview. Biodiversity Conservation 10: 1317–1341.

    Article  Google Scholar 

  • **e, D., D. Yu, L. F. Yu & C. H. Liu, 2010. Asexual propagation of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hyrdrobiologia 655: 37–47.

    Article  Google Scholar 

  • **e, D., D. Yu, W. H. You & C. X. **a, 2013. The propagule supply, litter layers and canopy shade in the littoral community influence the establishment and growth of Myriophyllum aquaticum. Biological Invasions 15: 113–123.

    Article  Google Scholar 

  • Xu, C. Y., S. S. Schooler & R. D. van Klinken, 2010. Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. Journal of Ecology 98: 833–844.

    Article  Google Scholar 

  • Yu, F., Y. Chen & M. Dong, 2002. Clonal integration enhances survival and performance of Potentilla anserina, suffering from partial sand burial on Ordos plateau, China. Evolutionary Ecology 15: 303–318.

    Google Scholar 

  • Yu, F. H., N. Wang, W. M. He, Y. Chu & M. Dong, 2008. Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion. Annals of Botany 102: 571–577.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Y. **ao for critical comments, Dr. L. F. Yu for help with the data analysis, and C. M. Han, D. Y. Ma, J. Chen and Y. Q. Han for assistance with plant harvest. We also greatly appreciate Dr. Sidinei M. Thomaz and two anonymous reviewers for their valuable comments on an early version of the manuscript. This study was supported by the National Natural Science Foundation of China (30930011 and 31170339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

Additional information

Handling editor: Sidinei Magela Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, W., Yu, D., Liu, C. et al. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 718, 27–39 (2013). https://doi.org/10.1007/s10750-013-1596-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1596-4

Keywords

Navigation