Log in

Saprobity: a unified view of benthic succession models for coastal lagoons

  • Opinion Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We briefly review and expand upon classic conceptual models describing the succession of benthic communities along a gradient of organic matter (OM) enrichment developed for freshwater (the Saprobity System), coastal marine (the Pearson–Rosenberg [P–R] model) and lagoon (the Guélorget–Perthuisot [G–P] model) ecosystems. Differences and similarities between various approaches and models are highlighted and the P–R and G–P models are unified under a single conceptual framework of habitat saprobity in coastal lagoons. We refer to saprobity as the state of an aquatic ecosystem resulting from the input and decomposition of OM and the removal of its catabolites. In addition to other factors, such as salinity, saprobity is viewed as a selection factor for species diversity. The higher the saprobity is, the more impaired the system is, with progressively poorer benthic communities characterized by species that are increasingly tolerant of reducing conditions and toxicity. In coastal lagoons, these processes are strongly driven by hydrodynamics, which govern the land–sea gradient. Based on our review and analysis, we find that saprobity can be a useful descriptor of ecosystem state as determined by OM metabolism, suitable for characterizing the natural conditions of coastal lagoons and assessing their quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrew, H. & J. D. Witman, 2006. Local extinction of a foundation species in a hypoxic estuary: integrating individuals to ecosystem. Ecology 87: 717–730.

    Article  Google Scholar 

  • Arvanitidis, C., D. Koutsoubas, C. Dounas & A. Eleftheriou, 1999. Annelid fauna of a Mediterranean lagoon (Gialova Lagoon, south-west Greece): community structure in a severely fluctuating environment. Journal of the Marine Biological Association of the United Kingdom 79: 849–856.

    Article  Google Scholar 

  • Attrill, M. J., 2002. A testable linear model for diversity trends in estuaries. Journal of Animal Ecology 71: 262–269.

    Article  Google Scholar 

  • Bagarinao, T., 1992. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicology 24: 21–62.

    Article  CAS  Google Scholar 

  • Barnes, R. S. K., 1994. A critical appraisal of the application of Guélorget and Perthuisot’s concepts of the paralic ecosystem and confinement to macrotidal Europe. Estuarine, Coastal and Shelf Science 38: 41–48.

    Article  Google Scholar 

  • Bartoli, M., D. Longhi, D. Nizzoli, S. Como, P. Magni & P. Viaroli, 2009. Short term effects of hypoxia and bioturbation on solute fluxes, denitrification and buffering capacity in a shallow dystrophic pond. Journal of Experimental Marine Biology and Ecology 381: 39–47.

    Article  CAS  Google Scholar 

  • Beck, W. H. Jr., 1955. Suggested method for reporting biotic data. Sewage and Industrial Waste 27: 1193–1197.

    Google Scholar 

  • Bellan, G., 1967. Pollution et peuplements benthiques sur substrats meubles dans la région de Marseille. Revue Internationale d’Océanographie Médicale 6–7: 53–87 (in French).

    Google Scholar 

  • Bellan, G. & D. Bellan-Santini, 1972. Influence de la pollution sur les peuplements marins de la région de Marseille. In Ruivo, M. (ed.), Marine Pollution and Sea Life. FAO, Fishing News (Books) Ltd, London, UK: 396–401 (in French).

    Google Scholar 

  • Bick, H., 1963. A review of central European methods for the biological estimation of water pollution levels. Bulletin of the World Health Organisation 29: 401–413.

    CAS  Google Scholar 

  • Boesch, D. F., 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Marine Biology 21: 226–244.

    Article  Google Scholar 

  • Borja, A., J. Franco & V. Pérez, 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and Coastal environments. Marine Pollution Bulletin 40: 1100–1114.

    Article  CAS  Google Scholar 

  • Boyd, R., R. W. Dalrymple & B. A. Zaitlin, 1992. Classification of clastic coastal depositional environments. Sedimentary Geology 80: 139–150.

    Article  Google Scholar 

  • Braeckman, U., P. Provoost, B. Gribsholt, D. Van Gansbeke, J. J. Middelburg, K. Soetaert, M. Vincx & J. Vanaverbeke, 2010. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Marine Ecology Progress Series 399: 173–186.

    Article  CAS  Google Scholar 

  • Breber, P., L. Cilenti, T. Pagliani, B. Savino, A. Spada, R. Strada & T. Scirocco, 2001. La valutazione della qualità ambientale delle lagune. Biologi Italiani 31: 42–46 (in Italian).

    Google Scholar 

  • Breber, P., L. Cilenti & T. Scirocco, 2008. Un metodo per misurare la qualità ambientale delle lagune costiere del Mediterraneo (L’indice Lambda). CNR-ISMAR Lesina, Regione Puglia, Termoli, Italy, Tipografica Adriatica: 93 pp (in Italian).

  • Bulger, A. J., B. P. Hayden, M. E. Monaco, D. M. Nelson & M. G. McCormick-Ray, 1993. Biologically-based estuarine salinity zones derived from a multivariate analysis. Estuaries 16: 311–322.

    Article  Google Scholar 

  • Burnett, L. E., 1997. The challenges of living in hypoxic and hypercapnic aquatic environments. American Zoologist 37: 633–640.

    Google Scholar 

  • Caspers, H. & L. Karbe, 1966. Trophie und Saprobität als stoffwechseldynamischer Komplex. Gesichtspunkte für die Definition der Saprobitätsstufen. Archiv für Hydrobiologie 61: 453–470 (in German).

    Google Scholar 

  • Ceccherelli, V. U., I. Ferrari & P. Viaroli, 1994. Ecological research on the animal communities of the Po River Delta lagoons. Italian Journal of Zoology 61: 425–436.

    Google Scholar 

  • Chen, C. W. & G. T. Orlob, 1972. The accumulation and significance of sludge near San Diego outfall. Journal of the Water Pollution Control Federation 44: 1362–1371.

    Google Scholar 

  • Clark, R. B., 2001. Marine Pollution, 5th ed. Oxford University Press, Oxford, UK: 236 pp.

    Google Scholar 

  • CMEA (Council for Mutual Economic Assistance), 1969. Symposium on Questions of Saprobity, Prague [SEV (Sovet Èkonomičeskoj Vzaimopomoŝi), 1969. Simposium po voprosam saprobnosti, Praha] Moscow, USSR (in Russian).

  • Cohn, F., 1853. Über lebende Organismen im Trinkwasser. Zeitschrift für Klinische Medizin 4: 229–237 (in German).

    Google Scholar 

  • Como, S. & P. Magni, 2009. Temporal changes of a macrobenthic assemblage in harsh lagoon sediments. Estuarine, Coastal and Shelf Science 83: 638–646.

    Article  CAS  Google Scholar 

  • Cooksey, C. & J. Hyland, 2007. Sediment quality of the lower St. Johns River, Florida: an integrative assessment of benthic fauna, sediment-associated stressors, and general habitat characteristics. Marine Pollution Bulletin 54: 9–21.

    Article  PubMed  CAS  Google Scholar 

  • Costanza, R., B. G. Norton & B. D. Haskell, 1992. Ecosystem Health: New Goals for Environmental Management. Island Press, Washington, DC, USA.

    Google Scholar 

  • D’Ancona, U., A. Faganelli, F. Ranzoli & V. Marchesoni, 1954. Il trofismo della Laguna Veneta e la vivificazione marina. Archivio di Oceanografia e Limnologia 9: 9–285.

    Google Scholar 

  • Dalrymple, R. W., B. A. Zaitlin & R. Boyd, 1992. Estuarine facies models: conceptual models and stratigraphic implications. Journal of Sedimentary Petrology 62: 1130–1146.

    Google Scholar 

  • Davis, W. R., A. F. J. Draxler, J. F. Paul & J. J. Vitaliano, 1998. Benthic biological processes and Eh as a basis for a benthic index. Environmental Monitoring and Assessment 51: 259–268.

    Article  CAS  Google Scholar 

  • Dayv, J. W., C. A. S. Hall, W. M. Kemp & A. Yanez-Arancibia, 1989. Estuarine Ecology. Wiley, New York, USA: 558 pp.

    Google Scholar 

  • De Biasi, A. M., L. Benedetti-Cecchi, L. Pacciardi, E. Maggi, S. Vaselli & I. Bertocci, 2003. Spatial heterogeneity in the distribution of plants and benthic invertebrates in the lagoon of Orbetello (Italy). Oceanologica Acta 26: 39–46.

    Article  Google Scholar 

  • De Falco, G., P. Magni, L. M. H. Teräsvuori & G. Matteucci, 2004. Sediment grain size and organic carbon distribution in the Cabras lagoon (Sardinia, west Mediterranean). Chemistry and Ecology 20(Suppl. 1): S367–S377.

    Article  CAS  Google Scholar 

  • De Jonge, M., M. Eyckmans, R. Blust & L. Bervoets, 2011. Are accumulated sulfide-bound metals metabolically available in the benthic Oligochaete Tubifex tubifex? Environmental Science & Technology 45: 3131–3137.

    Article  CAS  Google Scholar 

  • Deborde, J., P. Anschutz, I. Auby, C. Glé, M.-V. Commarieu, D. Maurer, P. Lecroart & G. Abril, 2008. Role of tidal pum** on nutrient cycling in a temperate lagoon (Arcachon Bay, France). Marine Chemistry 109: 98–114.

    Article  CAS  Google Scholar 

  • Diaz, R. J. & R. Rosenberg, 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review 33: 245–303.

    Google Scholar 

  • Eddy, F., 2005. Ammonia in estuaries and effects on fish. Journal of Fish Biology 67: 1495–1513.

    Article  CAS  Google Scholar 

  • Elliott, M. & V. Quintino, 2007. The Estuarine Quality Paradox, Environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin 54: 640–645.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, S. A. & R. E. Richardson, 1913. Studies on the biology of the upper Illinois River. Illinois State Laboratory of Natural History Bulletin 9: 481–574.

    Google Scholar 

  • Frisoni, G., O. Guélorget & J.-P. Perthuisot, 1984. Diagnose écologique appliquée à la mise en valeur biologique des lagunes côtières Méditerranéennes: approche méthodologique. In Lasserre, G. & J. M. Kapetsky (eds), CFCM, Studies and Reviews 61. FAO, Rome: 39–95 (in French).

    Google Scholar 

  • George, S. G., B. J. S. Pirie, A. R. Cheyne, T. L. Coombs & P. T. Grant, 1978. Detoxification of metals by marine bivalves: an ultrastructural study of the compartmentation of copper and zinc in the oyster Ostrea edulis. Marine Biology 45: 147–156.

    Article  CAS  Google Scholar 

  • Ghetti, P. F. & O. Ravera, 1994. European perspective on biological monitoring. In Loeb, S. L. & A. Space (eds), Biological Monitoring of Aquatic Systems. Lewis Publ., CRC Press, Boca Raton, Florida, USA: 31–46.

    Google Scholar 

  • Glémarec, M. & C. Hily, 1981. Perturbations apportées à la macrofaune benthique de la baie de Concarneau par les effluents urbains et portuaires. Acta Oecologica, Oecologia Applicata 2: 139–150 (in French).

    Google Scholar 

  • Goldhaber, M. B. & I. R. Kaplan, 1974. The Sulfur Cycle. The Sea Ideas and Observations on Progress in the Study of the Seas, Vol. 5, Issue 4022. John Wiley and Sons: 569–655.

  • Grall, J. & M. Glémarec, 1997. Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuarine, Coastal and Shelf Science 44(Suppl. A): 43–53.

    Article  Google Scholar 

  • Grall, J. & M. Glémarec, 2003. L’indice d’évaluation de l’endofaune côtière. In Alzieu, C. (ed.), Bioévaluation de la qualité environnementale des sédiments portuaires et des zones d’immersion. Edition IFREMER: 51–85 (in French).

  • Grassle, J. F. & J. P. Grassle, 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. Journal of Marine Research 32: 253–284.

    Google Scholar 

  • Gravina, M. F., G. D. Ardizzone, F. Scaletta & C. Chimenz, 1989. Descriptive analysis and classification of benthic communities in some Mediterranean coastal lagoons (Central Italy). Marine Ecology 10: 141–166.

    Article  Google Scholar 

  • Gray, J. S., 1979. Pollution-induced changes in populations [and Discussion]. Philosophical Transactions of the Royal Society of London, Series B 286: 545–561 [Discussion: Gray, J. S., M. Waldichuk, A. J. Newton, R. J. Berry, A. V. Holden & T. H Pearson: 558–561].

    Article  CAS  Google Scholar 

  • Gray, J. S., 1992. Eutrophication in the sea. In Ferrari, I., V. U. Ceccherelli & R. Rossi (eds), Marine Eutrophication and Population Dynamics. Olsen and Olsen, Fredensborg, Denmark: 3–15.

    Google Scholar 

  • Gray, J. S., R. S. Wu & Y. Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249–279.

    Article  Google Scholar 

  • Grieshaber, M. K. & S. Völkel, 1998. Animal adaptations for tolerance and exploitation of poisonous sulfide. Annual Review of Physiology 60: 30–53.

    Article  Google Scholar 

  • Guélorget, O., 1987. Aquaculture Development in Greek Lagoons. Project Report No. 2. FAO, Rome: 34.

    Google Scholar 

  • Guélorget, O. & J. P. Perthuisot, 1983. Le domaine paralique. Expressions géologiques, biologiques et économiques du confinement. Travaux du Laboratoire de Géologie, Ecole Normale Supérieure de Paris 16: 1–136 (in French).

    Google Scholar 

  • Guélorget, O. & J. P. Perthuisot, 1989. The Paralic Realm, Geological, Biological and Economic Expression of Confinement. Report No. FAO-FI-RAB/83/016. FAO, Rome.

  • Guélorget, O. & J. P. Perthuisot, 1992. Paralic ecosystems. Biological organization and functioning. Vie et Milieu 42: 215–251.

    Google Scholar 

  • Hagerman, L., 1998. Physiological flexibility; a necessity for life in anoxic and sulphidic habitats. Hydrobiologia 376: 241–254.

    Article  Google Scholar 

  • Hassall, A. H., 1850. A Microscopic Examination of the Water Supplied to the Inhabitants of London and Suburban Districts. Samuel Highley, London, UK.

    Google Scholar 

  • Heap, A., S. Bryce, D. Ryan, L. Radke, C. Smith, R. Smith, P. Harris & D. Heggie, 2001. Australian Estuaries and Coastal Waterways: A Geoscience Perspective for Improved and Integrated Resource Management. Record 2001/07. Australian Geological Survey Organisation, Australia: 1–11.

  • Hily, C., 1984. Variabilité de la macrofaune benthique dans les milieux hypertrophiques de la Rade de Brest. Thèse de Doctorat d’Etat, Univ. Bretagne Occidentale, Vol. 1: 359 pp., Vol. 2: 337 pp. (in French).

  • Hyland, J., L. Balthis, I. Karakassis, P. Magni, A. Petrov, J. Shine, O. Vestergaard & R. Warwick, 2005. Organic carbon content of sediments as an indicator of stress in the marine benthos. Marine Ecology Progress Series 295: 91–103.

    Article  CAS  Google Scholar 

  • Järvekülg, A., 1975. A scale for the differentiation of the degree of organic pollution of mild toxicity (zones of saprobity) in the beta-mesohaline zones (with salinity 5-10 0/00) of the benthal of the Gulf of Finland.

  • Järvekülg, A., 1976. Zoobenthos as an indicator of the pollution, eutrophication and self-purification of the benthal of the Baltic Sea Ambio Special Report No. 4. 2nd Soviet-Swedish Symposium on the Pollution of the Baltic: 81–88.

  • Johns, A. R.., A. C. Taylor, R. J. A. Atkinson & M. K. Grieshaber, 1997. Sulphide metabolism in Thalassinidean Crustacea. Journal of the Marine Biological Association of the United Kingdom 77: 127–144.

    Google Scholar 

  • Karlson, K., R. Rosenberg & E. Bonsdorff, 2002. Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters – a review. Oceanography and Marine Biology: An Annual Review 40: 427–489.

    Google Scholar 

  • Karlson, K., E. Bonsdorff & R. Rosenberg, 2007. The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. Ambio 36: 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Knoben, R. A. E., C. Roos & M. C. M. Van Oirschot, 1995. Biological Assessment methods for watercourses, Vol. 3. UN/ECE Task Force on Monitoring & Assessment: 86 pp.

  • Kolar, C. S. & F. J. Rahel, 1993. Interaction of a biotic factor (predator presence) and an abiotic factor (low oxygen) as an influence on benthic invertebrate communities. Oecologia 95: 210–219.

    Article  Google Scholar 

  • Kolkwitz, R. & M. Marsson, 1902. Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna. Mittheilungen aus der Königlichen Versuchs- und Prüfungsanstalt für Wasserversorgung und Abwässerbeseitigung zu Berlin 1: 33–72 (in German).

  • Kolkwitz, R. & M. Marsson, 1908. Ökologie der pflanzlichen Saprobien. Berichte Der Deutschen Botanischen Gesellschaft 26a: 505–519 (in German).

    Google Scholar 

  • Kolkwitz, R. & M. Marsson, 1909. Ökologie der tierischen Saprobien. Internationale Revue gesamten Hydrobiologie 2: 126–152 (in German).

    Article  Google Scholar 

  • Koutsoubas, D., C. Dounas, C. S. Arvanitidis, S. Kornilios, G. Petihakis, G. Triantafyllou & A. Eleftheriou, 2000. Macrobenthic community structure and disturbance assessment in Gialova Lagoon, Ionian Sea. Journal of Marine Sciences 57: 1472–1480.

    Article  Google Scholar 

  • Kurihara, H., 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373: 275–284.

    Article  CAS  Google Scholar 

  • Lannig, G., S. Eilers, H.-O. Pörtner, I. M. Sokolova & C. Bock, 2010. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas – changes in metabolic pathways and thermal response. Marine Drugs 8: 2318–2339.

    Article  PubMed  CAS  Google Scholar 

  • Leppäkoski, E., 1971. Benthic recolonization of the Bornhom Basin (southern Baltic) in 1969–71. Thalassia Jugoslavica 7: 171–179.

    Google Scholar 

  • Leppäkoski, E., 1975. Assessment of degree of pollution on the basis of macrozoobenthos in marine brackish-water environments. Acta Academiae Aboensis Series B 35: 1–96.

    Google Scholar 

  • Maggiore, F. & E. Keppel, 2007. Biodiversity and distribution of polychaetes and molluscs along the Dese estuary (Lagoon of Venice, Italy). Hydrobiologia 588: 189–203.

    Article  Google Scholar 

  • Magni, P., 2003. Biological benthic tools as indicators of coastal marine ecosystems health. Chemistry and Ecology 19: 363–372.

    Article  CAS  Google Scholar 

  • Magni, P., G. De Falco, S. Como, D. Casu, A. Floris, A. N. Petrov, A. Castelli & A. Perilli, 2008. Distribution and ecological relevance of fine sediments in organic-enriched lagoons: the case study of the Cabras lagoon (Sardinia, Italy). Marine Pollution Bulletin 56: 549–564.

    Article  PubMed  CAS  Google Scholar 

  • Magni, P., D. Tagliapietra, C. Lardicci, L. Balthis, A. Castelli, S. Como, G. Frangipane, G. Giordani, J. Hyland, F. Maltagliati, G. Pessa, A. Rismondo, M. Tataranni, P. Tomassetti & P. Viaroli, 2009. Animal–sediment relationships: evaluating the ‘Pearson–Rosenberg paradigm’ in Mediterranean coastal lagoons. Marine Pollution Bulletin 58: 478–486.

    Article  PubMed  CAS  Google Scholar 

  • Milovidova, N. Û., 1975. Izmeneniâ donnyc biocenozov Sevastopolskic buct za period s 1913 po 1973 gg. Biologiâ morâ 35: 117–124 (in Russian).

  • Mistri, M., E. A. Fano, G. Rossi, K. Caselli & R. Rossi, 2000. Variability in macrobenthos communities in the Valli di Comacchio, northern Italy, a hypereutrophized lagoonal ecosystem. Estuarine, Coastal and Shelf Science 51: 599–611.

    Article  Google Scholar 

  • Mistri, M., R. Rossi & E. A. Fano, 2001. Structure and secondary production of a soft bottom macrobenthic community in a brackish lagoon (Sacca di Goro, north-eastern Italy). Estuarine, Coastal and Shelf Science 52: 605–616.

    Article  Google Scholar 

  • Molinaroli, E., S. Guerzoni, G. De Falco, A. Sarretta, A. Cucco, S. Como, S. Simeone, A. Perilli & P. Magni, 2009. Relationships between hydrodynamic parameters and grain size in two contrasting transitional environments: the lagoons of Venice and Cabras, Italy. Sedimentary Geology 219: 196–207.

    Article  Google Scholar 

  • Nicolaidou, A., S. Reizopoulou, D. Koutsoubas, S. Orfanidis & T. Kevrekidis, 2005. Biological components of Greek lagoonal ecosystems: an overview. Mediterranean Marine Science 6: 31–50.

    Google Scholar 

  • Nicolaidou, A., K. Petrou, K. Kormas & S. Reizopoulou, 2006. Inter-annual variability of soft bottom macrofaunal communities in two Ionian Sea lagoons. Hydrobiologia 555: 89–98.

    Article  Google Scholar 

  • Nilsson, H. C. & R. Rosenberg, 1997. Benthic habitat quality assessment of an oxygen stressed fjord by surface and sediment profile. Journal of Marine Systems 11: 249–264.

    Article  Google Scholar 

  • Nilsson, H. C. & R. Rosenberg, 2000. Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile imaging and by grab samples. Marine Ecology Progress Series 197: 139–149.

    Article  Google Scholar 

  • Nixon, S. C., A. Gunby, S. J. Ashley, S. Lewis & I. Naismith, 1995. Development and Testing of General Quality Assessment Schemes: Dissolved Oxygen and Ammonia in Estuaries. Environment Agency R&D Project Record PR 469/15/HO.

  • Nonnis Marzano, C., L. Scalera Liaci, A. Fianchini, F. Gravina, M. Mercurio & G. Corriero, 2003. Distribution, persistence and change in the macrobenthos of the lagoon of Lesina (Apulia, southern Adriatic Sea). Oceanologica Acta 26: 57–66.

    Article  Google Scholar 

  • Pantle, R. & H. Buck, 1955. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserfach. Wasser und Abwasser 96: 604–607 (in German).

  • Pearson, T. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: An Annual Review 16: 229–311.

    Google Scholar 

  • Pearson, T. H., J. S. Gray & P. J. Johannessen, 1983. Objective selection of sensitive species indicative of pollution induced changes in benthic communities. 2. Data analyses. Marine Ecology Progress Series 12: 237–255.

    Article  Google Scholar 

  • Pérès, J. M. & G. Bellan, 1972. Aperçu sur l’influence des pollutions sur les peuplements benthiques. In Ruivo, M. (ed.), Marine Pollution and Sea Life. FAO, Fishing News (Books) Ltd., London, UK: 375–386 (in French).

    Google Scholar 

  • Pianka, E. R., 1970. On r- and K-selection. American Naturalist 104: 592–597.

    Article  Google Scholar 

  • Rapport, D. J., H. A. Regier & T. C. Hutchinson, 1985. Ecosystem behavior under stress. American Naturalist 125: 617–640.

    Article  Google Scholar 

  • Reish, D. J., 1972. The use of marine invertebrates as indicators of varying degrees of marine pollution. In Ruivo, M. (ed.), Marine Pollution and Sea Life. FAO, Fishing News (Books) Ltd., London, UK: 203–207.

    Google Scholar 

  • Reizopoulou, S. & A. Nicolaidou, 2004. Benthic diversity of coastal brackish-water lagoons in western Greece. Aquatic Conservation: Marine and Freshwater Ecosystems 14: 93–102.

    Article  Google Scholar 

  • Reizopoulou, S., K. A. Kormas & A. Nicolaidou, 1998. Benthic biodiversity in five coastal brackish water lagoons of Amvrakikos Gulf, Hellas. Rapport de la Commission Internationale pour la Mer Méditerranée 35: 580–581.

    Google Scholar 

  • Remane, A., 1934. Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36: 34–74 (in German).

  • Remane, A., 1971. Ecology of brackish water. In Remane, A. & C. Schlieper (eds), Biology of Brackish Water, 2nd ed. Schweizer-bart’sche, Stuttgart: 1–210.

    Google Scholar 

  • Rhoads, D. C. & J. D. Germano, 1986. Interpreting long-term changes in benthic community structure: a new protocol. Hydrobiologia 142: 291–308.

    Article  Google Scholar 

  • Richardson, R. E., 1928. The bottom fauna of the middle Illinois River, 1913–1925: its distribution, abundance, valuation, and index value in the study of stream pollution. Illinois Natural History Survey Bulletin 17: 387–475.

    Google Scholar 

  • Rosenberg, R., S. Agrenius, B. Hellman, H. C. Nilsson & K. Norling, 2002. Recovery of marine benthic habitats and fauna in a Swedish fjord following improved oxygen conditions. Marine Ecology Progress Series 234: 43–53.

    Article  Google Scholar 

  • Rosenberg, R., M. Blomqvist, H. C. Nilsson, H. Cederwall & A. Dimminga, 2004. Marine quality assessment by use of benthic species-abundance distributions: a proposed new protocol within the European Union Water Framework Directive. Marine Pollution Bulletin 49: 728–739.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, F., A. Castelli & C. Lardicci, 2006. Distribution of macrobenthic assemblages along a marine gradient in Mediterranean eutrophic coastal lagoons. Marine Ecology 27: 66–75.

    Article  Google Scholar 

  • Ruivo, M., 1972. Section 3: Effects of pollutants on the biology and life cycle of marine organisms – summary of discussion. In Ruivo, M. (ed.), Marine Pollution and Sea Life. FAO, Fishing News (Books) Ltd., London, UK: 190–194.

    Google Scholar 

  • Rumohr, H., 1993. Erfahrungen und Ergebnisse aus 7 Jahren Benthosmonitoring in der südlichen Ostsee. In Duincker, J. C. (ed.), Das Biologische Monitoring der Ostsee im Institut für Meereskunde Kiel 1985–1992. Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität, Nr. 240, Kiel, Germany: 90–109 (in German).

  • Rumohr, H., 1995. Monitoring the marine environment with imaging methods. Scientia Marina 59: 129–138.

    Google Scholar 

  • Sanz-Lázaro, C. & A. Marín, 2011. Diversity patterns of benthic macrofauna caused by marine fish farming. Diversity 3: 176–199.

    Article  Google Scholar 

  • Sasaki, A., Y. Hagimori, Y. Nakatsubo & A. Hoshika, 2009. Tidal effects on the organic carbon mineralization rate under aerobic conditions in sediments of an intertidal estuary. Ecological Research 24: 723–729.

    Article  CAS  Google Scholar 

  • Sax, N. I. (ed.), 1974. Industrial Pollution. Van Nostrand Reinhold Co., New York, USA: 702 pp.

    Google Scholar 

  • Schmitz, O. J., V. Krivan & O. Ovadia, 2004. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecological Letters 7: 153–163.

    Article  Google Scholar 

  • Simboura, N. & A. Zenetos, 2002. Benthic indicators to use in ecological quality classification of Mediterranean soft bottoms marine ecosystems, including a new biotic index. Mediterranean Marine Science 3: 77–111.

    Google Scholar 

  • Sládeček, V., 1965. The future of the saprobity system. Hydrobiologia 25: 518–537.

    Article  Google Scholar 

  • Sládeček, V., 1967. The ecological and physiological trends in the saprobiology. Hydrobiologia 30: 513–526.

    Article  Google Scholar 

  • Sládeček, V., 1973. System of water quality from the biological point of view. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie 7: 1–218.

    Google Scholar 

  • Sládeček, V. & F. Tuček, 1975. Relation of the saprobic index to BOD5. Water Research 9: 791–794.

    Article  Google Scholar 

  • Somero, G. N., J. J. Childress & A. E. Anderson, 1989. Transport, metabolism, and detoxification of hydrogen sulfide in animals from sulfide-rich environments. CRC Critical Reviews in Aquatic Sciences 1: 591–614.

    CAS  Google Scholar 

  • Tagliapietra, D., M. Sigovini & A. Volpi Ghirardini, 2009. A review of terms and definitions to categorise estuaries, lagoons and associated environments. Marine & Freshwater Research 60: 497–509.

    Article  Google Scholar 

  • Thrush, S. F., J. E. Hewit, A. Norkko, P. E. Nicholls, G. A. Funnell & J. I. Ellis, 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Marine Ecology Progress Series 263: 101–112.

    Article  Google Scholar 

  • Tlig-Zouari, S., T. Mami & F. Maamouri, 2009. Structure of benthic macroinvertebrates and dynamics in the northern lagoon of Tunis. Journal of the Marine Biological Association of the United Kingdom 89: 1305–1318.

    Article  CAS  Google Scholar 

  • Tomanek, L. & H. Brian, 2002. Physiological ecology of rocky intertidal organisms: a synergy of concepts. Integrative and Comparative Biology 42(4): 771–775.

    Article  PubMed  Google Scholar 

  • US EPA, 1986. Quality Criteria for Water 1986. EPA 440/5-86-001. Office of Water, US Environmental Protection Agency, Washington, DC.

  • US EPA, 1989. Ambient Water Quality Criteria for Ammonia (Saltwater)—1989. Office of Research and Development, Environmental Research Laboratory, Narragansett, Rhode Island. EPA 440/5-88-004: 59 pp.

  • Valiela, I., 1995. Marine Ecological Processes, 2nd ed. Springer-Verlag, New York: 686.

    Google Scholar 

  • Vaquer-Sunyer, R. & C. M. Duarte, 2010. Sulfide exposure accelerates hypoxia-driven mortality. Limnology and Oceanography 55: 1075–1082.

    Article  CAS  Google Scholar 

  • Vatova, A., 1940a. Distribuzione geografica delle alghe nelle Lagune Venete e fattori che le determinano. Thalassia 4: 1–37 (in Italian).

    Google Scholar 

  • Vatova, A., 1940b. La zoocenosi della laguna veneta. Thalassia 3: 1–25 (in Italian).

    Google Scholar 

  • Viaroli, P., M. Bartoli, G. Giordani, P. Magni & D. T. Welsh, 2004. Biogeochemical indicators as tools for assessing sediment quality/vulnerability in transitional aquatic ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems 14(Suppl. 1): S19–S29.

    Article  Google Scholar 

  • Vismann, B., 1990. Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Marine Ecology Progress Series 59: 229–238.

    Google Scholar 

  • Vismann, B., 1991. Sulfide tolerance: physiological mechanisms and ecological implications. Ophelia 34: 1–27.

    Google Scholar 

  • Wilson, J. O., R. Buchsbaum, I. Valiela & T. Swain, 1986. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Marine Ecology Progress Series 29: 177–187.

    Article  Google Scholar 

  • Windoffer, R., A. Jahn, F. Meyberg, J. Krieger & O. Giere, 1999. Sulphide-induced metal precipitation in the mantle edge of Macoma balthica (Bivalvia, Tellinidae) – a means of detoxification. Marine Ecology Progress Series 187: 159–170.

    Article  CAS  Google Scholar 

  • Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fließender Gewässer. Archiv für Hydrobiologie 57: 389–407 (in German).

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the helpful comments, opinions and criticisms from our handling editor, P. Viaroli, and two anonymous referees, which helped us improve an earlier version of this manuscript and to clarify the concepts expressed therein. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS) for PM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Magni.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagliapietra, D., Sigovini, M. & Magni, P. Saprobity: a unified view of benthic succession models for coastal lagoons. Hydrobiologia 686, 15–28 (2012). https://doi.org/10.1007/s10750-012-1001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1001-8

Keywords

Navigation