Log in

Cadmium and lead toxicity on tropical freshwater periphyton communities under laboratory-based mesocosm experiments

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Periphyton constitutes an important community that is useful for assessment of ecological conditions in lotic systems. The objective of this study was to assess the effects of different mixtures of Cd and Pb on periphyton growth as well as Cd and Pb mixtures toxicity to diatom assemblages in laboratory mesocosm experiments. A natural periphyton community sampled from the Monjolinho River (South of Brazil) was inoculated into five experimental systems containing clean glass substrates for periphyton colonization. The communities were exposed to mixtures of dissolved Cd and Pb concentrations of 0.01 and 0.1 mg l−1 Cd and 0.033 and 0.1 mg l−1 Pb. Periphyton ash-free dry weight, growth rate, diatom cell density and diatom community composition were analyzed on samples collected after 1, 2 and 3 weeks of colonization. High Cd concentration (0.1 mg l−1) has negative effects on periphyton growth while high concentration of Pb (0.1 mg l−1) decreased the toxic effects of Cd on periphyton growth. Shifts in species composition (development of more resistant species like Achnanthidium minutissimum and reduction of sensitive ones like Cymbopleura naviculiformis, Fragilaria capucina, Navicula cryptocephala, Encyonema silesiacum, Eunotia bilunaris, and Gomphonema parvulum), decreases in species diversity of diatom communities with increasing Cd and Pb concentrations and exposure duration have been demonstrated in this study making diatom communities appropriate monitors of metal mixtures in aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altenburger, R., 2011. Understanding combined effects for metal co-exposure in ecotoxicology. Metal Ions in Life Science 8: 1–26.

    CAS  Google Scholar 

  • APHA, 1988. Standard Methods for the Examination of Water and Waste Water, 20th ed. American Public Health association, Washington, DC.

    Google Scholar 

  • Bere, T. & J. G. Tundisi, 2011. The effects of substrate type on diatom-based multivariate water quality assessment in a tropical river (Monjolinho), São Carlos-SP, Brazil. Water Air Soil Pollution 216: 391–409.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F., 1990. Use of relative specific growth rates of periphytic diatoms to assess enrichment of a stream. New Zealand Journal of Marine and Freshwater Research 24: 9–18.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch.

    Google Scholar 

  • Clements, W. H., D. S. Cherry & J. Cairns Jr., 1989. The influence of copper exposure on predator-prey interactions in aquatic insect communities. Freshwater Biolology 21: 483–488.

    Article  CAS  Google Scholar 

  • Descy, J. P. & M. Coste, 1991. A test of methods for assessing water quality based on diatoms. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24: 2112–2116.

    Google Scholar 

  • Duong, T. T., S. Morin, M. Coste, O. Herlory, A. Feurtet-Mazel & A. Boudou, 2008. Seasonal effects of Cd accumulation in periphytic diatom communities of freshwater biofilms. Aquatic Toxicology 90: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Duong, T. T., S. Morin, M. Coste, O. Herlory, A. Feurtet-Mazel & A. Boudou, 2010. Experimental toxicity and bioaccumulation of Cd in freshwater periphytic diatoms in relation with biofilm maturity. Science of the Total Environment 408: 552–562.

    Article  PubMed  CAS  Google Scholar 

  • Genter, R. B., 1996. Ecotoxicology of inorganic chemical stress to algae. In Stevenson, R. J., M. L. Bothwell & R. L. Low (eds), Algal Ecology: Freshwater Benthic Systems. Academic press, New York.

    Google Scholar 

  • Genter, R. B., D. S. Cherry, E. P. Smith & J. Cairns Jr., 1988. Attached-algal abundance altered by individual and combined treatments of zinc and pH. Environmental Toxicology Chemistry 7: 723–733.

    Article  CAS  Google Scholar 

  • Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003a. Effects of Cd stress on periphytic diatom communities in indoor artificial streams. Freshwater Biology 48: 316–328.

    Article  CAS  Google Scholar 

  • Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003b. Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Archives of Environmental Contamination Toxicology 44: 189–197.

    Article  CAS  Google Scholar 

  • Guanzon, N. G., H. Nakahara & Y. Yoshida, 1994. Inhibitory effects of heavy-metals on growth and photosynthesis of 3 freshwater microalgae. Fisheries Science 60: 379–384.

    CAS  Google Scholar 

  • Hammer, O., D. A. T. Harper & P. D. Ryan, 2009. PAST—Palaeontological Statistics, Version 1.90 [available in internet at http://folk.uio.no/ohammer/past].

  • Harrison, R. M. & D. P. H. Laxen, 1981. Lead Pollution, Causes and Control. Chapman and Hall, London.

    Google Scholar 

  • Husaini, Y. & L. C. Rai, 1991. Studies on nitrogen and phosphorus metabolism and the photosynthetic electron-transport system of Nostoc linckia under Cd stress. Journal of Plant Physiology 138: 429–435.

    CAS  Google Scholar 

  • Ivorra, N., S. Bremer, H. Guasch, M. H. S. Kraak & W. Admiraal, 2000. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environmental Toxicology and Chemistry 19: 1332–1339.

    Article  CAS  Google Scholar 

  • Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.

    Article  Google Scholar 

  • Larned, S. T., 2010. A prospectus for periphyton: recent and future ecological research. Journal of North American Benthological Society 29: 182–206.

    Google Scholar 

  • Metzeltin, D. & H. Lange-Bertalot, 1998. Tropical Diatoms of South America I. Iconographia Diatomologica 5: 1–695.

    Google Scholar 

  • Metzeltin, D. & H. Lange-Bertalot, 2007. Tropical diatoms of South America II. Iconographia Diatomologica 18: 1–877.

    Google Scholar 

  • Metzeltin, D., H. Lange-Bertalot & F. García-Rodríguez, 2005. Diatoms of Uruguay. Iconographia Diatomologica 15: 1–736.

    Google Scholar 

  • Morin, S., M. Vivas-Nogues, T. T. Duong, A. Boudou, M. Coste & F. Delmas, 2007. Dynamics of benthic diatom colonization in Cd/Zn-polluted river (Riou-Mort, France). Fundamentals of Applied Limnology 168: 179–187.

    Article  CAS  Google Scholar 

  • Morin, S., T. T. Duong, A. Dabrin, A. Coynel, O. Herlory, M. Baudrimont, et al., 2008a. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution 151: 532–542.

    Article  PubMed  CAS  Google Scholar 

  • Morin, S., T. T. Duong, H. Olivier, A. Feurtet-Mazel & M. Coste, 2008b. Cd toxicity and bioaccumulation in freshwater biofilms. Archives of Environmental Contamination Toxicology 54: 173–186.

    Article  CAS  Google Scholar 

  • Nichols, H. W., 1973. Woods hole culture medium. In Stein, J. R. (ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge: 16–17.

    Google Scholar 

  • Nriagu, J. O. (ed.), 1978. The Biogeochemistry of Lead in the Environment. Part A. Ecological Cycles, Part B. Biological Effects. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Nriagu, J. O. (ed.), 1980. Cadmium in the Environment Part 1. Wiley Interscience, Chichester.

    Google Scholar 

  • Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 14: 14–36.

    CAS  Google Scholar 

  • Rai, L. C., J. P. Gaur & H. D. Kumar, 1981. Phycology and heavy-metal pollution. Biological Reviews of Cambridge Philosophical Society 56: 99–151.

    Article  CAS  Google Scholar 

  • Rivkin, R. B., 1979. Effects of Pb on growth of the marine diatom Skeletonema costatum. Marine Biology 50: 239–247.

    Article  CAS  Google Scholar 

  • Stevenson, R. J., M. L. Bothwell & R. L. Lowe, 1996. Algal Ecology—Freshwater Benthic Ecosystems. Academic Press, San Diego.

    Google Scholar 

  • US EPA, 1995. Revised Aquatic Life Metal Criteria in EPA`s National Toxic Rule. EPA-822-F-95-001, April 1995.

  • US EPA, 2001. Water Pollution Legal Aspects. Monitoring Water Quality [available on internet at http://www.epa.gov].

  • Waldock, M. J., 1998. Organometallic compounds in the aquatic environment. In Calow, P. (ed.), The Handbook of Ecotoxicology. Blackwell Science, Oxford.

    Google Scholar 

  • Wong, P. T. S., 1987. Toxicity of Cd to freshwater microorganisms, phytoplankton, and invertebrates. In Nriagu, J. O. & J. B. Sprague (eds), Cd in the Aquatic Environment. Wiley, New York.

    Google Scholar 

Download references

Acknowledgments

This study was made possible by the provision of funds from International Foundation for Science (IFS) and Third World Academy of Science through Conselho Nacional de Desenvolvimento Científico e Tecnológico. I also wish to thank the Insttituto Internacional de Ecologia management and staff for their support during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taurai Bere.

Additional information

Handling editor: Stefano Amalfitano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bere, T., Tundisi, J.G. Cadmium and lead toxicity on tropical freshwater periphyton communities under laboratory-based mesocosm experiments. Hydrobiologia 680, 187–197 (2012). https://doi.org/10.1007/s10750-011-0917-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0917-8

Keywords

Navigation