Log in

Responses of periphyton to artificial nutrient enrichment in freshwater kettle ponds of Cape Cod National Seashore

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nutrient enrichment bioassays, in conjunction with sampling and analysis of surface water chemistry, were conducted in freshwater lakes (kettle ponds) of Cape Cod National Seashore (Massachusetts, USA) to ascertain the importance of nitrogen (N) and phosphorus (P) in regulating the growth of periphyton. Arrays of nutrient diffusing substrata (NDS) were suspended 0.5 m below the water surface in a total of 12 ponds in July and August 2005. Algal biomass develo** on each NDS after ~3 weeks of exposure in each month was assessed by quantifying chlorophyll a + phaeophyton pigments. In both July and August, strong responses to N + P and N enrichments were observed in the majority of ponds, while P had no stimulatory effect. These responses correspond well with low atomic ratios (1–18) of dissolved inorganic nitrogen (DIN) to total phosphorus (TP) in ambient surface waters. The results suggest that conditions in the kettle ponds develop whereby nitrogen is the primary limiting nutrient to periphyton growth. While this may be a seasonal phenomenon, it has implications for nutrient management in individual ponds and within the larger watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose H., Wilzbach M. A. and Cummins K. W. (2004). Periphyton response to increased light and salmon carcass enhancement in six northern California streams. Journal of the North American Benthological Society 23: 701–712

    Article  Google Scholar 

  • APHA, 1998. Standard methods for the examination of water and wastewater. 20th edn. American Public Health Association, Washington, DC

  • Axier R. P. and Reuter J. E. (1996). Nitrate uptake by phytoplankton and periphyton: Whole-lake enrichments and mesocosms 15N experiments in an oligotrophic lake. Limnology and Oceanography 41: 659–671

    Article  Google Scholar 

  • Azim M. E., Beveridge M. C. M., Dam A. A. and Verdegem M. C. J. (2005). Periphyton and aquatic production: an introduction. In: Azim, E., Verdegem, M., and Beveridge, M. (eds) Periphyton: Ecology, Exploitation and Management, pp 1–13. CABI Publishing, Wallingford

    Google Scholar 

  • Bergström A. K., Elomgvist P. and Jansson M. (2005). Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnology and Oceanography 50: 987–994

    Article  Google Scholar 

  • Biggs B. J. F. and Lowe R. L. (1994). Responses of two trophic levels to patch enrichment along a New Zealand stream continuum. New Zealand Journal of Marine and Freshwater Research 28: 119–134

    Article  CAS  Google Scholar 

  • Brand, L. E., 2002. The transport of terrestrial nutrients to South Florida coastal waters. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, 353–406.

  • Camacho A., W. A. Wurtsbaugh, M. R. Miracle, X. Armengol & E. Vicente, 2003. Nitrogen limitation of phytoplankton in a Spanish karst lake with a deep chlorophyll maximum: a nutrient enrichment bioassay approach. Journal of Plankton Research 8: 397–404

    Google Scholar 

  • Davies J. M., Nowlin W. H. and Mazumder A. (2004). Temporal changes in nitrogen and phosphorus codeficiency of plankton in lakes of coastal and interior British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 61: 1538–1551

    Article  CAS  Google Scholar 

  • Diamond, D., 2000. Nitrate and/or Nitrite in Brackish or Seawater 5 to 50.0 μM (0.07 to 0.70 mg N/L). QuikChem® Method 31–107-04-1-C (revised by L. Egan). Zellweger Analytics, Inc., Lachat Instruments Division, Milwaulkee, WI, 23 pp

  • Diamond, D., 2001. Orthophosphate in Brackish or Seawater 2.0 to 10.0 μM P as PO4, QuikChem® Method 31-115-01-1-G. Zellweger Analytics, Inc., Lachat Instruments Division, Milwaulkee, WI, 17pp

  • Dodds W. K. (2003). The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology 39: 840–849

    CAS  Google Scholar 

  • Downing A. L. (2005). Relative effects of species composition and richness on ecosystem properties in ponds. Ecology 86: 701–715

    Google Scholar 

  • Dzialowski A. R., Wang S.H., Lim N. C., Spotts W. W. and Huggins D. G. (2005). Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research 27: 587–595

    Article  CAS  Google Scholar 

  • Elser J. J., Marzolf E. R. and Goldman C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the fresh-waters of North America - a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Science 47: 1468–1477

    Article  CAS  Google Scholar 

  • Fairchild W. G., Lowe R. L. and Richardson W. B. (1985). Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465–472

    Article  CAS  Google Scholar 

  • Geider R. J. and La Roche J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37: 1–17

    Article  Google Scholar 

  • Guildford S. J. and Hecky R. E. (2000). Total nitrogen, total phosphorus and nutrient limitation in lakes and oceans: is there a common relationship?. Limnology and Oceanography 45: 1213–1223

    CAS  Google Scholar 

  • Hansen H. P. and Grasshoff K. (1983). Procedures for the automated determination of seawater constituents. In: Grasshoff, K., Ehrhardt, M. and Kremling, K. (eds) Methods of Seawater Analysis: Second, Revised and Extended Edition, pp 362–379. Verlag Chemie, Weinheim

    Google Scholar 

  • Henry J. and Fisher S. (2003). Spatial segregation of periphyton communities in a desert stream: causes and consequences for N cycling. Journal of the North American Benthological Society 22: 511–527

    Google Scholar 

  • Heiskary S. A. and Walker W. W. (1988). Develo** phosphorus criteria for Minnesota lakes. Lake and Reservoir Management 4: 1–9

    Article  Google Scholar 

  • Higley B., Carrick H. J., Brett M. T., Luecke C. and Goldman C. R. (2001). The effects of ultraviolet radiation and nutrient additions on periphyton biomass and composition in a sub-alpine lake (Castle Lake, USA). International Review of Hydrobiology 86: 147–163

    Article  CAS  Google Scholar 

  • Jöbgen A. M., Palm A. and Melkonian M (2004). Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia 528: 123–142

    Article  Google Scholar 

  • Kiffney P. M. and Richardson J. S. (2001). Interactions among nutrients, periphyton and invertebrate and vertebrate (Ascaphus truei) grazers in experimental channels. Copeia 2001: 422–429

    Article  Google Scholar 

  • Klausmeier C. A., Litchman E., Daufresne T. and Levin S. A. (2004). Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Knepel, K. & K. Borgen, 2000. Determination of ammonium by flow injection analysis colorimetry. QuikChem® Method 10-107-06-1-C (revised by K. Bitzan). Zellweger Analytics, Inc., Lachat Instruments Division, Milwaulkee, WI, 25 pp

  • Lemmens S. (2003). Periphyton collectors as a tool to measure environmental performance of ocean outlets. Water Science and Technology 47: 125–131

    PubMed  CAS  Google Scholar 

  • Loeb S. L., Reuter J. E. and Goldman C. R. (1983). Littoral zone production of oligotrophic lakes. In: Wetzel, R. G. (eds) Periphyton of Freshwater Ecosystems, pp 161–167. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Maberly S. C., King L., Dent M. M., Jones R. I. and Gibson C. E. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology 47: 2136–2152

    Article  Google Scholar 

  • Martin, L., J. Portnoy, & C. Roman, 1993. Water Quality Monitoring and Research Plans for Kettle ponds, Cape Cod National Seashore. Technical Report NPS/NRWRD/NRTR-93/15. National Park Service, Water Resources Division, Ft. Collins, CO, 60 pp

  • Matthews R., Hilles M. and Pelletier G (2002). Determining trophic state in Lake Whatcom, Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation. Hydrobiologia 486: 107–121

    Article  Google Scholar 

  • McCollum E., Crowder L. B. and McCollum S. A. (1998). Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79: 1980–1994

    Article  Google Scholar 

  • McCormick P. V. and Stevenson R .J. (1998). Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology 34: 726

    Article  Google Scholar 

  • Moraska-Lafrançois B., Nydick K. M. and Caruso B. (2003). Influence of nitrogen on phytoplankton biomass and community composition in fifteen Snowy Range lakes (Wyoming, U.S.A.). Arctic, Antarctic, and Alpine Research 35: 499–508

    Article  Google Scholar 

  • NADP, 2005. National Atmospheric Deposition Program Program Office. NRSP-3. Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL

  • Nürnberg G., 2001. Eutrophication and trophic state. Lakeline (Spring 2001): 29–33

  • Nydick K. R., Moraska-LaFrancois B., Baron J. S. and Johnson B. M. (2004). Nitrogen regulation of algal biomass, productivity, and composition in shallow mountain lakes, Snowy Range, Wyoming, USA. Canadian Journal of Fisheries and Aquatic Sciences 61: 1256–1268

    Article  CAS  Google Scholar 

  • Pillsbury R. W., Lowe R. L., Pan Y. and Greenwood J. L. (2002). Changes in the benthic algal community and nutrient limitation in Saginaw Bay, Lake Huron during the invasion of the zebra mussel (Dreissena polymorpha). Journal of the North American Benthological Society 21: 238–252

    Article  Google Scholar 

  • Portnoy, J. W., M. G. Winkler, P. R. Sanford, & C. N. Farris, 2001. Kettle pond Data Atlas: Paleoecology and Modern Water Quality. Cape Cod National Seashore, National Park Service, U. S. Dept. of Interior, 119 pp

  • Rodusky A. J., Steinman A. D., East T. L., Sharfstein B. and Meeker R. H. (2001). Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, USA. Hydrobiologia 448: 27–39

    Article  CAS  Google Scholar 

  • Roman C. T., Barrett N. E. and Portnoy J. W. (2001). Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, USA) kettle ponds. Hydrobiologia 443: 31–42

    Article  Google Scholar 

  • Smith, S. M., 2004. Assessment of periphyton as a component of kettle pond monitoring at Cape Cod National Seashore (2004). NPS Technical Report. Cape Cod National Seashore, Wellfleet, MA, 15 pp

  • Soukup, M. A., 1977. Limnology and the management of the freshwater ponds of Cape Cod National Seashore. NPS Technical Report. Cape Cod National Seashore, Wellfleet, MA, 71 pp

  • Tilman D., Kiesling R., Sterner R. W., Kilham S. S. and Johnson F. A. (1986). Green, bluegreen, and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon, and nitrogen. Archiv fur Hydrobiologie 106: 473–486

    Google Scholar 

  • Turner M. A., Howell E. T., Robinson G. G. C., Brewster J. F., Sigurdson L. J. and Findlay D. L. (1995). Growth characteristics of bloom-forming filamentous green algae in the littoral zone of an experimentally acidified lake. Canadian Journal of Fisheries and Aquatic Sciences 52: 2251–2263

    Article  Google Scholar 

  • USEPA, 2001. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs. First Edition. EPA-822-B00-001. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology. Washington, DC, 232 pp

  • USGS, 1997. Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples. Book 5, Chapter A4. Techniques of Water-Resources Investigations. U.S. Geological Survey, 332 pp

  • Valderrama J. C. (1981). The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122

    Article  CAS  Google Scholar 

  • Vinebrooke R. D., Dixit S. S., Graham M. D., Gunn J. M., Chen Y. and Belzile N. (2002). Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield. Canadian Journal of Fisheries and Aquatic Sciences 59: 483–493

    Article  Google Scholar 

  • Winkler, M. G., 1997. The development of Ryder pond in the Cape Cod National Seashore and determination of the causes of recent Ryder pondwater chemistry changes. Technical Report NPS/NESO-RNR/NRTR/97–01. National Park Service, North Atlantic Regional Office., 176 pp

  • Wolfe A. P., Baron J. S. and Cornett R. J. (2001). Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (U.S.A.). Journal of Paleolimnology 25: 1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.M., Lee, K.D. Responses of periphyton to artificial nutrient enrichment in freshwater kettle ponds of Cape Cod National Seashore. Hydrobiologia 571, 201–211 (2006). https://doi.org/10.1007/s10750-006-0239-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0239-4

Keywords

Navigation