Log in

Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a Position Paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although treatment for heart failure induced by cancer therapy has improved in recent years, the prevalence of cardiomyopathy due to antineoplastic therapy remains significant worldwide. In addition to traditional mediators of myocardial damage, such as reactive oxygen species, new pathways and target cells should be considered responsible for the impairment of cardiac function during anticancer treatment. Accordingly, there is a need to develop novel therapeutic strategies to protect the heart from pharmacologic injury, and improve clinical outcomes in cancer patients. The development of novel protective therapies requires testing putative therapeutic strategies in appropriate animal models of chemotherapy-induced cardiomyopathy. This Position Paper of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to: (1) define the distinctive etiopatogenetic features of cardiac toxicity induced by cancer therapy in humans, which include new aspects of mitochondrial function and oxidative stress, neuregulin-1 modulation through the ErbB receptor family, angiogenesis inhibition, and cardiac stem cell depletion and/or dysfunction; (2) review the new, more promising therapeutic strategies for cardioprotection, aimed to increase the survival of patients with severe antineoplastic-induced cardiotoxicity; (3) recommend the distinctive pathological features of cardiotoxicity induced by cancer therapy in humans that should be present in animal models used to identify or to test new cardioprotective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHF:

Congestive heart failure

ROS:

Reactive oxygen species

NRG-1:

Neuregulin-1

Top2:

Topoisomerase II

PI3:

Phosphoinositide-3

AKT:

Protein kinase B

MEK/ERK:

Mitogen extracellular kinase

TK:

Tyrosine kinase

VEGFR:

Vascular endothelial growth factor receptor

PDGFR:

Platelet-derived growth factor receptor

CSCs:

Cardiac stem cells

CPCs:

Cardiac progenitor cells

ACE:

Angiotensin-converting enzyme

References

  1. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    CAS  PubMed  Google Scholar 

  2. Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH (2007) Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 25:3808–3815

    CAS  PubMed  Google Scholar 

  3. Ewer SM, Ewer MS (2008) Cardiotoxicity profile of trastuzumab. Drug Saf 31:459–467

    CAS  PubMed  Google Scholar 

  4. Sawyer DB, Zup**er C, Miller TA, Eppenberger HM, Suter TM (2002) Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105:1551–1554

    CAS  PubMed  Google Scholar 

  5. Outomuro D, Grana DR, Azzato F, Milei J (2007) Adriamycin-induced myocardial toxicity: new solutions for an old problem? Int J Cardiol 117:6–15

    PubMed  Google Scholar 

  6. Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131:561–578

    CAS  PubMed  Google Scholar 

  7. Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4:3076–3086

    CAS  PubMed  Google Scholar 

  8. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    CAS  PubMed  Google Scholar 

  9. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y et al (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839–8846

    CAS  PubMed  Google Scholar 

  10. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF et al (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642

    PubMed  Google Scholar 

  11. Pointon AV, Walker TM, Phillips KM, Luo J, Riley J, Zhang SD et al (2010) Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One 5:e12733

    PubMed Central  PubMed  Google Scholar 

  12. Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis 12:877–885

    CAS  PubMed  Google Scholar 

  13. Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111:1601–1610

    CAS  PubMed  Google Scholar 

  14. Di X, Gennings C, Bear HD, Graham LJ, Sheth CM, White KL Jr et al (2010) Influence of the phosphodiesterase-5 inhibitor, sildenafil, on sensitivity to chemotherapy in breast tumor cells. Breast Cancer Res Treat 124:349–360

    CAS  PubMed  Google Scholar 

  15. Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res 75:168–177

    CAS  PubMed  Google Scholar 

  16. Pentassuglia L, Sawyer DB (2009) The role of neuregulin-1 beta/erbb signaling in the heart. Exp Cell Res 315:627–637

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    CAS  PubMed  Google Scholar 

  18. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    CAS  PubMed  Google Scholar 

  19. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    CAS  PubMed  Google Scholar 

  20. Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34:1102–1111

    CAS  PubMed  Google Scholar 

  21. Ewer MS, Ewer SM (2010) Troponin I provides insight into cardiotoxicity and the anthracycline-trastuzumab interaction. J Clin Oncol 28:3901–3904

    CAS  PubMed  Google Scholar 

  22. Odiete O, Hill MF, Sawyer DB (2012) Neuregulin in cardiovascular development and disease. Circ Res 111:1376–1385

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Ky B, Vejpongsa P, Yeh ET, Force T, Moslehi JJ (2013) Emerging paradigms in cardiomyopathies associated with cancer therapies. Circ Res 113:754–764

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin-1/erbb4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270

    CAS  PubMed  Google Scholar 

  25. Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344

    CAS  PubMed  Google Scholar 

  26. De Keulenaer GW, Doggen K, Lemmens K (2010) The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 106:35–46

    PubMed  Google Scholar 

  27. Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S et al (2012) Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail 14:130–137

    CAS  PubMed  Google Scholar 

  28. Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD et al (2012) Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 13:1–10

    Google Scholar 

  29. Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465

    CAS  PubMed  Google Scholar 

  30. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:7820–7826

    CAS  PubMed  Google Scholar 

  31. Timolati F, Ott D, Pentassuglia L, Giraud MN, Perriard JC, Suter TM et al (2006) Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 41:845–854

    CAS  PubMed  Google Scholar 

  32. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C et al (2008) Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 26:5204–5212

    PubMed  Google Scholar 

  33. Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123:3190–3200

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Cheng H, Force T (2010) Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 106:21–34

    CAS  PubMed  Google Scholar 

  35. Tocchetti CG, Gallucci G, Coppola C, Piscopo G, Cipresso C, Maurea C et al (2013) The emerging issue of cardiac dysfunction induced by antineoplastic angiogenesis inhibitors. Eur J Heart Fail 15:482–489

    CAS  PubMed  Google Scholar 

  36. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  37. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT et al (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol 23(Suppl 7):vii155–vii166

    PubMed  Google Scholar 

  38. Marone G, Granata F (2014) Angiogenesis, lymphangiogenesis and clinical implications. Preface. Chem Immunol Allergy 99:XI–XII

    PubMed  Google Scholar 

  39. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    CAS  PubMed  Google Scholar 

  40. Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

    CAS  PubMed  Google Scholar 

  41. Gresset S, Westermeier P, Rademacher S, Ouzunova M, Presterl T, Westhoff P et al (2010) Stable carbon isotope discrimination is under genetic control in the C4 species maize with several genomic regions influencing trait expression. Plant Physiol 164:131–143

    Google Scholar 

  42. Chintalgattu V, Ai D, Langley RR, Zhang J, Bankson JA, Shih TL et al (2010) Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 120:472–484

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L et al (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011–2019

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Khakoo AY, Kassiotis CM, Tannir N, Plana JC, Halushka M, Bickford C et al (2008) Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer 112:2500–2508

    CAS  PubMed  Google Scholar 

  45. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    CAS  PubMed  Google Scholar 

  46. Telli ML, Witteles RM, Fisher GA, Srinivas S (2008) Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann Oncol 19:1613–1618

    CAS  PubMed  Google Scholar 

  47. Hasinoff BB, Patel D (2010) The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicol Appl Pharmacol 249:132–139

    CAS  PubMed  Google Scholar 

  48. Anisimov A, Alitalo A, Korpisalo P, Soronen J, Kaijalainen S, Leppanen VM et al (2009) Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res 104:1302–1312

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Loges S, Roncal C, Carmeliet P (2009) Development of targeted angiogenic medicine. J Thromb Haemost 7:21–33

    CAS  PubMed  Google Scholar 

  50. Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47:887–893

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Levy BI (2006) Microvascular plasticity and experimental heart failure. Hypertension 47:827–829

    CAS  PubMed  Google Scholar 

  52. De Boer RA, Pinto YM, Van Veldhuisen DJ (2003) The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation 10:113–126

    PubMed  Google Scholar 

  53. Kerkela R, Woulfe KC, Durand JB, Vagnozzi R, Kramer D, Chu TF et al (2009) Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci 2:15–25

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073

    CAS  PubMed Central  PubMed  Google Scholar 

  56. De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L et al (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292

    PubMed Central  PubMed  Google Scholar 

  57. Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P et al (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116:1865–1877

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ladas EJ, Jacobson JS, Kennedy DD, Teel K, Fleischauer A, Kelly KM (2004) Antioxidants and cancer therapy: a systematic review. J Clin Oncol 22:517–528

    CAS  PubMed  Google Scholar 

  59. van Dalen EC, Caron HN, Dickinson HO, Kremer LC (2008) Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev (2):CD003917. doi:10.1002/14651858.CD003917.pub3

  60. Huelsenbeck J, Henninger C, Schad A, Lackner KJ, Kaina B, Fritz G (2011) Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis 2:e190

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U et al (2009) Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice. Cancer Res 69:695–699

    CAS  PubMed  Google Scholar 

  62. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH (2012) Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol 60:2384–2390

    CAS  PubMed  Google Scholar 

  63. Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S et al (2011) Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol 58:988–989

    PubMed  Google Scholar 

  64. Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW (2011) Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 124:642–650

    PubMed Central  PubMed  Google Scholar 

  65. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10:598–605

    PubMed  Google Scholar 

  66. Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH et al (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40:1713–1723

    CAS  PubMed  Google Scholar 

  67. Giovannucci E, Chan AT (2010) Role of vitamin and mineral supplementation and aspirin use in cancer survivors. J Clin Oncol 28:4081–4085

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Hardy ML (2008) Dietary supplement use in cancer care: help or harm. Hematol Oncol Clin N Am 22:581–617

    Google Scholar 

  69. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G et al (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220

    CAS  PubMed  Google Scholar 

  70. Okumura K, ** D, Takai S, Miyazaki M (2002) Beneficial effects of angiotensin-converting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters. Jpn J Pharmacol 88:183–188

    CAS  PubMed  Google Scholar 

  71. Tokudome T, Mizushige K, Noma T, Manabe K, Murakami K, Tsuji T et al (2000) Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J Cardiovasc Pharmacol 36:361–368

    CAS  PubMed  Google Scholar 

  72. Lopez-Sendon J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H et al (2004) Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. The task force on ACE-inhibitors of the European Society of Cardiology. Eur Heart J 25:1454–1470

    PubMed  Google Scholar 

  73. Cernecka H, Ochodnicka-Mackovicova K, Kucerova D, Kmecova J, Nemcekova V, Doka G et al (2013) Enalaprilat increases PPARbeta/delta expression, without influence on PPARalpha and PPARgamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol 714:472–477

    CAS  PubMed  Google Scholar 

  74. Soga M, Kamal FA, Watanabe K, Ma M, Palaniyandi S, Prakash P et al (2006) Effects of angiotensin II receptor blocker (candesartan) in daunorubicin-induced cardiomyopathic rats. Int J Cardiol 110:378–385

    PubMed  Google Scholar 

  75. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K et al (2005) Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 104:2492–2498

    CAS  PubMed  Google Scholar 

  76. Shi Y, Moon M, Dawood S, McManus B, Liu PP (2011) Mechanisms and management of doxorubicin cardiotoxicity. Herz 36:296–305

    CAS  PubMed  Google Scholar 

  77. Bovelli D, Plataniotis G, Roila F (2010) Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol 21(Suppl 5):v277–v282

    Google Scholar 

  78. Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH (2013) Cardioprotective effect of beta-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail 6:420–426

    CAS  PubMed  Google Scholar 

  79. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M et al (2013) Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol 167:2306–2310

    PubMed  Google Scholar 

  80. Oliva S, Cioffi G, Frattini S, Simoncini EL, Faggiano P, Boccardi L et al (2012) Administration of angiotensin-converting enzyme inhibitors and beta-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: marker of risk or cardioprotection in the real world? Oncologist 17:917–924

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A et al (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48:2258–2262

    CAS  PubMed  Google Scholar 

  82. Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM et al (2013) Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol 61:2355–2362

    CAS  PubMed  Google Scholar 

  83. Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T et al (2012) Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Cardiology 123:240–247

    Google Scholar 

  84. Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD et al (2008) Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci USA 105:14555–14560

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Zhang X, Szeto C, Gao E, Tang M, ** J, Fu Q et al (2013) Cardiotoxic and cardioprotective features of chronic beta-adrenergic signaling. Circ Res 112:498–509

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S et al (2002) Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 105:2867–2871

    CAS  PubMed  Google Scholar 

  87. Heck SL, Gulati G, Ree AH, Schulz-Menger J, Gravdehaug B, Rosjo H et al (2012) Rationale and design of the prevention of cardiac dysfunction during an adjuvant breast cancer therapy (PRADA) trial. Cardiology 123:240–247

    CAS  PubMed  Google Scholar 

  88. Pituskin E, Haykowsky M, Mackey JR, Thompson RB, Ezekowitz J, Koshman S et al (2011) Rationale and design of the multidisciplinary approach to novel therapies in cardiology oncology research trial (MANTICORE 101-breast): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI. BMC Cancer 11:318

    PubMed Central  PubMed  Google Scholar 

  89. Oliveira MS, Melo MB, Carvalho JL, Melo IM, Lavor MS, Gomes DA et al (2013) Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J Cancer Sci Ther 5:52–57

    CAS  PubMed  Google Scholar 

  90. Di GH, Jiang S, Li FQ, Sun JZ, Wu CT, Hu X et al (2012) Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy 14:412–422

    CAS  PubMed  Google Scholar 

  91. Merino H, Singla DK (2014) Notch-1 mediated cardiac protection following embryonic and induced pluripotent stem cell transplantation in doxorubicin-induced heart failure. PLoS One 9:e101024

    PubMed Central  PubMed  Google Scholar 

  92. Singla DK (2014) Akt-mTOR pathway inhibits apoptosis and fibrosis in doxorubicin-induced cardiotoxicity following embryonic stem cell transplantation. Cell Transplant 24(6):1031–1042

    PubMed  Google Scholar 

  93. Singla DK, Abdelli LS (2014) Embryonic stem cells and released factors stimulate c-kit/FLK-1 progenitor cells and promote neovascularization in doxorubicin-induced cardiomyopathy. Cell Transplant 24(6):1043–1052

    PubMed  Google Scholar 

  94. Madonna R, Rokosh G, De Caterina R, Bolli R (2010) Hepatocyte growth factor/Met gene transfer in cardiac stem cells—potential for cardiac repair. Basic Res Cardiol 105:443–452

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Herman EH, Ferrans VJ (1998) Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol 25:15–21

    CAS  PubMed  Google Scholar 

  96. Lipshultz SE, Cohen H, Colan SD, Herman EH (2006) The relevance of information generated by in vitro experimental models to clinical doxorubicin cardiotoxicity. Leuk Lymphoma 47:1454–1458

    CAS  PubMed  Google Scholar 

  97. Zbinden G, Bachmann E, Holderegger C (1971) Model systems for cardiotoxic effects of anthracyclines. Antibiot Chemother 1978(23):255–270

    Google Scholar 

  98. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M et al (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114:2474–2481

    CAS  PubMed  Google Scholar 

  99. Piegari E, Di Salvo G, Castaldi B, Vitelli MR, Rodolico G, Golino P et al (2008) Myocardial strain analysis in a doxorubicin-induced cardiomyopathy model. Ultrasound Med Biol 34:370–378

    PubMed  Google Scholar 

  100. Adamcova M, Simunek T, Kaiserova H, Popelova O, Sterba M, Potacova A et al (2007) In vitro and in vivo examination of cardiac troponins as biochemical markers of drug-induced cardiotoxicity. Toxicology 237:218–228

    CAS  PubMed  Google Scholar 

  101. Madonna R, Delli Pizzi S, Di Donato L, Mariotti A, Di Carlo L, D’Ugo E et al (2012) Non-invasive in vivo detection of peripheral limb ischemia improvement in the rat after adipose tissue-derived stromal cell transplantation. Circ J 76:1517–1525

    CAS  PubMed  Google Scholar 

  102. Madonna R, Delli Pizzi S, Tartaro A, De Caterina R (2014) Transplantation of mesenchymal cells improves peripheral limb ischemia in diabetic rats. Mol Biotechnol 56:438–448

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalinda Madonna.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madonna, R., Cadeddu, C., Deidda, M. et al. Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a Position Paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. Heart Fail Rev 20, 621–631 (2015). https://doi.org/10.1007/s10741-015-9497-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9497-4

Keywords

Navigation