Log in

Effects of apelin on the cardiovascular system

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Apelin is an endogenous peptide acting on the APJ receptor. It consists of several isoforms characterized by different numbers of amino acids. The number of amino acids in the active isoforms range from 36 to 12. Apelin-13 and, to a lesser extent, apelin-36 are considered the most active isoforms with the greatest activity on the cardiovascular homeostasis. The effects normally exerted by the basal level of endogenous apelin can be enhanced not only by its up-regulation, but may also by its exogenous administration. The present review considers the effects of apelin on various aspects of the cardiovascular function, such as cardiac development, vasomotor tone, angiogenesis, myocardial inotropy in healthy and failing hearts as well as the prevention of ischemia–reperfusion injury, cardiac fibrosis and remodeling. Also the biphasic changes in apelin level during the evolution of heart failure are considered. Although the positive inotropic effect exerted by apelin in normal and failing hearts would suggest the use of this peptide in the treatment of heart failure, the limited duration and extent of its effect do not support this possibility, unless a long-lasting (6 h) infusion is performed to overcome the limit of its short life. However, although the data on the characteristics of the inotropic activity do not provide a strong support for the treatment of active heart failure, apelin may be used in the prevention of heart failure because of its activity in limiting the consequences of myocardial ischemia such as infarct size and cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O′Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136(1–2):355–360

    PubMed  Google Scholar 

  2. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fu**o M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476. doi:10.1006/bbrc.1998.9489

    CAS  PubMed  Google Scholar 

  3. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74(1):34–41

    CAS  PubMed  Google Scholar 

  4. Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia–reperfusion injury. Basic Res Cardiol 102(6):518–528. doi:10.1007/s00395-007-0671-2

    CAS  PubMed  Google Scholar 

  5. Zhou N, Zhang X, Fan X, Argyris E, Fang J, Acheampong E, DuBois GC, Pomerantz RJ (2003) The N-terminal domain of APJ, a CNS-based coreceptor for HIV-1, is essential for its receptor function and coreceptor activity. Virology 317(1):84–94

    CAS  PubMed  Google Scholar 

  6. Zhen EY, Higgs RE, Gutierrez JA (2013) Pyroglutamyl apelin-13 identified as the major apelin isoform in human plasma. Anal Biochem 442(1):1–9. doi:10.1016/j.ab.2013.07.006

    CAS  PubMed  Google Scholar 

  7. Masri B, Knibiehler B, Audigier Y (2005) Apelin signalling: a promising pathway from cloning to pharmacology. Cell Signal 17(4):415–426. doi:10.1016/j.cellsig.2004.09.018

    CAS  PubMed  Google Scholar 

  8. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54(3):598–604. doi:10.1161/HYPERTENSIONAHA.109.134619

    CAS  PubMed  Google Scholar 

  9. Kleinz MJ, Davenport AP (2005) Emerging roles of apelin in biology and medicine. Pharmacol Ther 107(2):198–211. doi:10.1016/j.pharmthera.2005.04.001

    CAS  PubMed  Google Scholar 

  10. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118(3):119–125. doi:10.1016/j.regpep.2003.11.002

    CAS  PubMed  Google Scholar 

  11. Fukushima H, Kobayashi N, Takeshima H, Koguchi W, Ishimitsu T (2010) Effects of olmesartan on Apelin/APJ and Akt/endothelial nitric oxide synthase pathway in Dahl rats with end-stage heart failure. J Cardiovasc Pharmacol 55(1):83–88. doi:10.1097/FJC.0b013e3181c87a82

    CAS  PubMed  Google Scholar 

  12. Foldes G, Horkay F, Szokodi I, Vuolteenaho O, Ilves M, Lindstedt KA, Mayranpaa M, Sarman B, Seres L, Skoumal R, Lako-Futo Z, deChatel R, Ruskoaho H, Toth M (2003) Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun 308(3):480–485

    CAS  PubMed  Google Scholar 

  13. De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, Kordon C, Vaudry H, Moos F, Llorens-Cortes C (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA 101(28):10464–10469. doi:10.1073/pnas.0403518101

    PubMed Central  PubMed  Google Scholar 

  14. Azizi M, Iturrioz X, Blanchard A, Peyrard S, De Mota N, Chartrel N, Vaudry H, Corvol P, Llorens-Cortes C (2008) Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol JASN 19(5):1015–1024. doi:10.1681/ASN.2007070816

    CAS  Google Scholar 

  15. Japp AG, Cruden NL, Amer DA, Li VK, Goudie EB, Johnston NR, Sharma S, Neilson I, Webb DJ, Megson IL, Flapan AD, Newby DE (2008) Vascular effects of apelin in vivo in man. J Am Coll Cardiol 52(11):908–913. doi:10.1016/j.jacc.2008.06.013

    CAS  PubMed  Google Scholar 

  16. Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, Kitada C, Honda S, Kurokawa T, Onda H, Nishimura O, Fu**o M (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275(28):21061–21067. doi:10.1074/jbc.M908417199

    CAS  PubMed  Google Scholar 

  17. Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, Marczin N, Szokodi I, Yacoub MH, Terracciano CM (2007) Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357(4):889–895. doi:10.1016/j.bbrc.2007.04.017

    CAS  PubMed  Google Scholar 

  18. Charo DN, Ho M, Fajardo G, Kawana M, Kundu RK, Sheikh AY, Finsterbach TP, Leeper NJ, Ernst KV, Chen MM, Ho YD, Chun HJ, Bernstein D, Ashley EA, Quertermous T (2009) Endogenous regulation of cardiovascular function by apelin-APJ. Am J Physiol Heart Circ Physiol 297(5):H1904–H1913. doi:10.1152/ajpheart.00686.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Chng SC, Ho L, Tian J, Reversade B (2013) ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell 27(6):672–680. doi:10.1016/j.devcel.2013.11.002

    CAS  PubMed  Google Scholar 

  20. **e F, Lv D, Chen L (2014) ELABELA: a novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin 46(7):620–622. doi:10.1093/abbs/gmu032

    PubMed  Google Scholar 

  21. Scimia MC, Hurtado C, Ray S, Metzler S, Wei K, Wang J, Woods CE, Purcell NH, Catalucci D, Akasaka T, Bueno OF, Vlasuk GP, Kaliman P, Bodmer R, Smith LH, Ashley E, Mercola M, Brown JH, Ruiz-Lozano P (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488(7411):394–398. doi:10.1038/nature11263

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99(2–3):87–92

    CAS  PubMed  Google Scholar 

  23. Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470(3):171–175

    CAS  PubMed  Google Scholar 

  24. Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A, Eichhorn J, Mahajan R, Agrawal R, Greve J, Robbins R, Patterson AJ, Bernstein D, Quertermous T (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res 65(1):73–82. doi:10.1016/j.cardiores.2004.08.018

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, Gardner TJ, Woo YJ (2004) Apelin has in vivo inotropic effects on normal and failing hearts. Circulation 110(11 Suppl 1):II187–II193. doi:10.1161/01.CIR.0000138382.57325.5c

    PubMed  Google Scholar 

  26. Ferrario CM (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst JRAAS 7(1):3–14. doi:10.3317/jraas.2006.003

    CAS  Google Scholar 

  27. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112(8):417–428. doi:10.1042/CS20060342

    CAS  PubMed  Google Scholar 

  28. Siddiquee K, Hampton J, McAnally D, May L, Smith L (2013) The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition. Br J Pharmacol 168(5):1104–1117. doi:10.1111/j.1476-5381.2012.02192.x

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kazemi-Bajestani SM, Patel VB, Wang W, Oudit GY (2012) Targeting the ACE2 and apelin pathways are novel therapies for heart failure: opportunities and challenges. Cardiol Res Pract 2012:823193. doi:10.1155/2012/823193

    PubMed Central  PubMed  Google Scholar 

  30. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K (2013) Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 123(12):5203–5211. doi:10.1172/JCI69608

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Catt KJ, Mendelsohn FA, Millan MA, Aguilera G (1984) The role of angiotensin II receptors in vascular regulation. J Cardiovasc Pharmacol 6(Suppl 4):S575–S586

    PubMed  Google Scholar 

  32. Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, Zheng L, Leeper NJ, Pearl NE, Patterson AJ, Anderson JP, Tsao PS, Lenardo MJ, Ashley EA, Quertermous T (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest 118(10):3343–3354. doi:10.1172/JCI34871

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Sun X, Iida S, Yoshikawa A, Senbonmatsu R, Imanaka K, Maruyama K, Nishimura S, Inagami T, Senbonmatsu T (2011) Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely. Hypertens Res 34(6):701–706. doi:10.1038/hr.2011.19

    CAS  PubMed  Google Scholar 

  34. Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z, Oudit GY (2010) Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 122(7):717–728. doi:10.1161/CIRCULATIONAHA.110.955369 718 p following 728

    CAS  PubMed  Google Scholar 

  35. Beyer AM, Guo DF, Rahmouni K (2013) Prolonged treatment with angiotensin 1–7 improves endothelial function in diet-induced obesity. J Hypertens 31(4):730–738. doi:10.1097/HJH.0b013e32835ecbe5

    CAS  PubMed  Google Scholar 

  36. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87(5):E1–E9

    CAS  PubMed  Google Scholar 

  37. McKinney CA, Fattah C, Loughrey CM, Milligan G, Nicklin SA (2014) Angiotensin-(1–7) and angiotensin-(1–9): function in cardiac and vascular remodelling. Clin Sci 126(12):815–827. doi:10.1042/CS20130436

    CAS  PubMed  Google Scholar 

  38. Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C, Pinto M, Escudero N, Garcia L, Novoa U, Ayala P, Diaz-Araya G, Godoy I, Chiong M, Lavandero S, Jalil JE, Michea L (2014) Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J Hypertens 32(4):771–783. doi:10.1097/HJH.0000000000000094

    CAS  PubMed  Google Scholar 

  39. Flores-Munoz M, Work LM, Douglas K, Denby L, Dominiczak AF, Graham D, Nicklin SA (2012) Angiotensin-(1–9) attenuates cardiac fibrosis in the stroke-prone spontaneously hypertensive rat via the angiotensin type 2 receptor. Hypertension 59(2):300–307. doi:10.1161/HYPERTENSIONAHA.111.177485

    CAS  PubMed  Google Scholar 

  40. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277(17):14838–14843. doi:10.1074/jbc.M200581200

    CAS  PubMed  Google Scholar 

  41. Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G, Samaja M, Pagliaro P (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300(6):H2308–H2315. doi:10.1152/ajpheart.01177.2010

    CAS  PubMed  Google Scholar 

  42. Inui M, Fukui A, Ito Y, Asashima M (2006) Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis. Dev Biol 298(1):188–200. doi:10.1016/j.ydbio.2006.06.028

    CAS  PubMed  Google Scholar 

  43. Wang IN, Wang X, Ge X, Anderson J, Ho M, Ashley E, Liu J, Butte MJ, Yazawa M, Dolmetsch RE, Quertermous T, Yang PC (2012) Apelin enhances directed cardiac differentiation of mouse and human embryonic stem cells. PLoS One 7(6):e38328. doi:10.1371/journal.pone.0038328

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kang Y, Kim J, Anderson JP, Wu J, Gleim SR, Kundu RK, McLean DL, Kim JD, Park H, ** SW, Hwa J, Quertermous T, Chun HJ (2013) Apelin-APJ signaling is a critical regulator of endothelial MEF2 activation in cardiovascular development. Circ Res 113(1):22–31. doi:10.1161/CIRCRESAHA.113.301324

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Saint-Geniez M, Masri B, Malecaze F, Knibiehler B, Audigier Y (2002) Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels. Mech Dev 110(1–2):183–186

    CAS  PubMed  Google Scholar 

  46. Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y (1999) Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 84(1–2):199–203

    CAS  PubMed  Google Scholar 

  47. Devic E, Paquereau L, Vernier P, Knibiehler B, Audigier Y (1996) Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 59(2):129–140

    CAS  PubMed  Google Scholar 

  48. Cox CM, D’Agostino SL, Miller MK, Heimark RL, Krieg PA (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296(1):177–189. doi:10.1016/j.ydbio.2006.04.452

    CAS  PubMed  Google Scholar 

  49. Saint-Geniez M, Argence CB, Knibiehler B, Audigier Y (2003) The msr/apj gene encoding the apelin receptor is an early and specific marker of the venous phenotype in the retinal vasculature. Gene Expr Patterns GEP 3(4):467–472

    CAS  Google Scholar 

  50. Kojima Y, Quertermous T (2008) Apelin-APJ signaling in retinal angiogenesis. Arterioscler Thromb Vasc Biol 28(10):1687–1688. doi:10.1161/ATVBAHA.108.174847

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T, Hinuma S, Baba A (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325(2):395–400. doi:10.1016/j.bbrc.2004.10.042

    CAS  PubMed  Google Scholar 

  52. Yang X, Zhu W, Zhang P, Chen K, Zhao L, Li J, Wei M, Liu M (2014) Apelin-13 stimulates angiogenesis by promoting crosstalk between AMP-activated protein kinase and Akt signaling in myocardial microvascular endothelial cells. Molecular Med Rep 9(5):1590–1596. doi:10.3892/mmr.2014.1984

    CAS  Google Scholar 

  53. Kidoya H, Naito H, Takakura N (2010) Apelin induces enlarged and nonleaky blood vessels for functional recovery from ischemia. Blood 115(15):3166–3174. doi:10.1182/blood-2009-07-232306

    CAS  PubMed  Google Scholar 

  54. Wang W, McKinnie SM, Patel VB, Haddad G, Wang Z, Zhabyeyev P, Das SK, Basu R, McLean B, Kandalam V, Penninger JM, Kassiri Z, Vederas JC, Murray AG, Oudit GY (2013) Loss of Apelin exacerbates myocardial infarction adverse remodeling and ischemia–reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc 2(4):e000249. doi:10.1161/JAHA.113.000249

    PubMed Central  PubMed  Google Scholar 

  55. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276(5317):1404–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN (2002) Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8(11):1303–1309. doi:10.1038/nm789

    CAS  PubMed  Google Scholar 

  57. Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM (2002) Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 105(18):2185–2191

    CAS  PubMed  Google Scholar 

  58. Cooke JP, Losordo DW (2002) Nitric oxide and angiogenesis. Circulation 105(18):2133–2135

    PubMed  Google Scholar 

  59. Kidoya H, Ueno M, Yamada Y, Mochizuki N, Nakata M, Yano T, Fujii R, Takakura N (2008) Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J 27(3):522–534. doi:10.1038/sj.emboj.7601982

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279. doi:10.1074/jbc.M404149200

    CAS  PubMed  Google Scholar 

  61. Feng JH, Li WM, Wu XP, Tan XY, Gao YH, Han CL, Li SQ, **e HN (2010) Hemodynamic effect of apelin in a canine model of acute pulmonary thromboembolism. Peptides 31(9):1772–1778. doi:10.1016/j.peptides.2010.06.004

    CAS  PubMed  Google Scholar 

  62. Kagiyama S, Fukuhara M, Matsumura K, Lin Y, Fujii K, Iida M (2005) Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept 125(1–3):55–59. doi:10.1016/j.regpep.2004.07.033

    CAS  PubMed  Google Scholar 

  63. Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132(6):1255–1260. doi:10.1038/sj.bjp.0703939

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Nagano K, Ishida J, Unno M, Matsukura T, Fukamizu A (2013) Apelin elevates blood pressure in ICR mice with LNAME induced endothelial dysfunction. Mol Med Rep 7(5):1371–1375. doi:10.3892/mmr.2013.1378

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Han X, Zhang DL, Yin DX, Zhang QD, Liu WH (2013) Apelin-13 deteriorates hypertension in rats after damage of the vascular endothelium by ADMA. Can J Physiol Pharmacol 91(9):708–714. doi:10.1139/cjpp-2013-0046

    CAS  PubMed  Google Scholar 

  66. Gurzu B, Petrescu BC, Costuleanu M, Petrescu G (2006) Interactions between apelin and angiotensin II on rat portal vein. J Renin Angiotensin Aldosterone Syst JRAAS 7(4):212–216. doi:10.3317/jraas.2006.040

    CAS  Google Scholar 

  67. Pitkin SL, Maguire JJ, Kuc RE, Davenport AP (2010) Modulation of the apelin/APJ system in heart failure and atherosclerosis in man. Br J Pharmacol 160(7):1785–1795. doi:10.1111/j.1476-5381.2010.00821.x

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhong JC, Yu XY, Huang Y, Yung LM, Lau CW, Lin SG (2007) Apelin modulates aortic vascular tone via endothelial nitric oxide synthase phosphorylation pathway in diabetic mice. Cardiovasc Res 74(3):388–395. doi:10.1016/j.cardiores.2007.02.002

    CAS  PubMed  Google Scholar 

  69. Rastaldo R, Cappello S, Folino A, Losano G (2011) Effect of apelin–apelin receptor system in postischaemic myocardial protection: a pharmacological postconditioning tool? Antioxid Redox Signal 14(5):909–922. doi:10.1089/ars.2010.3355

    CAS  PubMed  Google Scholar 

  70. Japp AG, Newby DE (2008) The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol 75(10):1882–1892. doi:10.1016/j.bcp.2007.12.015

    CAS  PubMed  Google Scholar 

  71. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2008) The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq Bras Cardiol 90(5):343–349

    PubMed  Google Scholar 

  72. Hashimoto T, Kihara M, Ishida J, Imai N, Yoshida S, Toya Y, Fukamizu A, Kitamura H, Umemura S (2006) Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 26(6):1267–1272. doi:10.1161/01.ATV.0000218841.39828.91

    CAS  PubMed  Google Scholar 

  73. Modgil A, Guo L, O’Rourke ST, Sun C (2013) Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism. PLoS One 8(12):e83051. doi:10.1371/journal.pone.0083051

    PubMed Central  PubMed  Google Scholar 

  74. Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91(5):434–440

    CAS  PubMed  Google Scholar 

  75. Perjes A, Skoumal R, Tenhunen O, Konyi A, Simon M, Horvath IG, Kerkela R, Ruskoaho H, Szokodi I (2014) Apelin increases cardiac contractility via protein kinase C epsilon- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One 9(4):e93473. doi:10.1371/journal.pone.0093473

    PubMed Central  PubMed  Google Scholar 

  76. Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21(8):1821–1830. doi:10.1096/fj.06-7294com

    CAS  PubMed  Google Scholar 

  77. Chong KS, Gardner RS, Morton JJ, Ashley EA, McDonagh TA (2006) Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur J Heart Fail 8(4):355–360. doi:10.1016/j.ejheart.2005.10.007

    CAS  PubMed  Google Scholar 

  78. Wang M, Gupta RC, Rastogi S, Kohli S, Sabbah MS, Zhang K, Mohyi P, Hogie M, Fischer Y, Sabbah HN (2013) Effects of acute intravenous infusion of apelin on left ventricular function in dogs with advanced heart failure. J Cardiac Fail 19(7):509–516. doi:10.1016/j.cardfail.2013.05.004

    CAS  Google Scholar 

  79. Dai T, Ramirez-Correa G, Gao WD (2006) Apelin increases contractility in failing cardiac muscle. Eur J Pharmacol 553(1–3):222–228. doi:10.1016/j.ejphar.2006.09.034

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londono JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B, Herijgers P, Vennekens R (2014) Increased beta-adrenergic inotropy in ventricular myocardium from Trpm4−/− mice. Circ Res 114(2):283–294. doi:10.1161/CIRCRESAHA.114.302835

    CAS  PubMed  Google Scholar 

  81. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. doi:10.1038/415198a

    CAS  PubMed  Google Scholar 

  82. Katz AM, Lorell BH (2000) Regulation of cardiac contraction and relaxation. Circulation 102(20 Suppl 4):IV69–IV74

    CAS  PubMed  Google Scholar 

  83. Dorn GW 2nd (2010) Adrenergic signaling polymorphisms and their impact on cardiovascular disease. Physiol Rev 90(3):1013–1062. doi:10.1152/physrev.00001.2010

    CAS  PubMed  Google Scholar 

  84. Wang C, Du JF, Wu F, Wang HC (2008) Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol 294(6):H2540–H2546. doi:10.1152/ajpheart.00046.2008

    CAS  PubMed  Google Scholar 

  85. Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res 85(9):777–786

    CAS  PubMed  Google Scholar 

  86. Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101

    CAS  PubMed  Google Scholar 

  87. Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81(10):779–793. doi:10.1016/j.lfs.2007.07.019

    CAS  PubMed  Google Scholar 

  88. Jia YX, Pan CS, Zhang J, Geng B, Zhao J, Gerns H, Yang J, Chang JK, Tang CS, Qi YF (2006) Apelin protects myocardial injury induced by isoproterenol in rats. Regul Pept 133(1–3):147–154. doi:10.1016/j.regpep.2005.09.033

    CAS  PubMed  Google Scholar 

  89. Tendera M (2004) The epidemiology of heart failure. J Renin Angiotensin Aldosterone Syst JRAAS 5(Suppl 1):S2–S6. doi:10.3317/jraas.2004.020

    Google Scholar 

  90. Piper HM, Abdallah Y, Schafer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61(3):365–371. doi:10.1016/j.cardiores.2003.12.012

    CAS  PubMed  Google Scholar 

  91. Zweier J, Rayburn B, Flaherty J, Weisfeldt M (1987) Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J Clin Invest 80:1728–1734

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Tao J, Zhu W, Li Y, **n P, Li J, Liu M, Li J, Redington AN, Wei M (2011) Apelin-13 protects the heart against ischemia–reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am J Physiol Heart Circ Physiol 301(4):H1471–H1486. doi:10.1152/ajpheart.00097.2011

    CAS  PubMed  Google Scholar 

  93. Kleinz MJ, Baxter GF (2008) Apelin reduces myocardial reperfusion injury independently of PI3K/Akt and P70S6 kinase. Regul Pept 146(1–3):271–277. doi:10.1016/j.regpep.2007.10.002

    CAS  PubMed  Google Scholar 

  94. Pisarenko OI, Lankin VZ, Konovalova GG, Serebryakova LI, Shulzhenko VS, Timoshin AA, Tskitishvili OV, Pelogeykina YA, Studneva IM (2014) Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol Cell Biochem 391(1–2):241–250. doi:10.1007/s11010-014-2008-4

    CAS  PubMed  Google Scholar 

  95. Zeng XJ, Zhang LK, Wang HX, Lu LQ, Ma LQ, Tang CS (2009) Apelin protects heart against ischemia/reperfusion injury in rat. Peptides 30(6):1144–1152. doi:10.1016/j.peptides.2009.02.010

    CAS  PubMed  Google Scholar 

  96. Smith CC, Mocanu MM, Bowen J, Wynne AM, Simpkin JC, Dixon RA, Cooper MB, Yellon DM (2007) Temporal changes in myocardial salvage kinases during reperfusion following ischemia: studies involving the cardioprotective adipocytokine apelin. Cardiovasc Drugs Ther 21(6):409–414. doi:10.1007/s10557-007-6054-y

    CAS  PubMed  Google Scholar 

  97. Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 116(2):173–191. doi:10.1016/j.pharmthera.2007.06.005

    CAS  PubMed  Google Scholar 

  98. Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T (2004) Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol 24(18):8007–8017. doi:10.1128/MCB.24.18.8007-8017.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Tang SY, **e H, Yuan LQ, Luo XH, Huang J, Cui RR, Zhou HD, Wu XP, Liao EY (2007) Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides 28(3):708–718. doi:10.1016/j.peptides.2006.10.005

    CAS  PubMed  Google Scholar 

  100. Andersen CU, Hilberg O, Mellemkjaer S, Nielsen-Kudsk JE, Simonsen U (2011) Apelin and pulmonary hypertension. Pulm Circ 1(3):334–346. doi:10.4103/2045-8932.87299

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Alastalo TP, Li M, de Jesus Perez V, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPARgamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest 121(9):3735–3746. doi:10.1172/JCI43382

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Cui RR, Mao DA, Yi L, Wang C, Zhang XX, **e H, Wu XP, Liao XB, Zhou H, Meng JC, Yuan LQ, Liao EY (2010) Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids 39(5):1193–1200. doi:10.1007/s00726-010-0555-x

    CAS  PubMed  Google Scholar 

  103. Zeng X, Yu SP, Taylor T, Ogle M, Wei L (2012) Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem cell Res 8(3):357–367. doi:10.1016/j.scr.2011.12.004

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A, Madjd Z (2012) Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosci 48(1):201–208. doi:10.1007/s12031-012-9808-3

    CAS  PubMed  Google Scholar 

  105. Yang Y, Zhang X, Cui H, Zhang C, Zhu C, Li L (2014) Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci Lett 568:44–49. doi:10.1016/j.neulet.2014.03.037

    CAS  PubMed  Google Scholar 

  106. Gu Q, Zhai L, Feng X, Chen J, Miao Z, Ren L, Qian X, Yu J, Li Y, Xu X, Liu CF (2013) Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem Int 63(6):535–540. doi:10.1016/j.neuint.2013.09.017

    CAS  PubMed  Google Scholar 

  107. Antushevich H, Pawlina B, Kapica M, Krawczynska A, Herman AP, Kuwahara A, Kato I, Zabielski R (2013) Influence of fundectomy and intraperitoneal or intragastric administration of apelin on apoptosis, mitosis, and DNA repair enzyme OGG1,2 expression in adult rats gastrointestinal tract and pancreas. J Physiol Pharmacol 64(4):423–428

    CAS  PubMed  Google Scholar 

  108. **e H, Yuan LQ, Luo XH, Huang J, Cui RR, Guo LJ, Zhou HD, Wu XP, Liao EY (2007) Apelin suppresses apoptosis of human osteoblasts. Apoptosis 12(1):247–254. doi:10.1007/s10495-006-0489-7

    CAS  PubMed  Google Scholar 

  109. Zhang Z, Yu B, Tao GZ (2009) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin Med J 122(19):2360–2365

    CAS  PubMed  Google Scholar 

  110. Pchejetski D, Foussal C, Alfarano C, Lairez O, Calise D, Guilbeau-Frugier C, Schaak S, Seguelas MH, Wanecq E, Valet P, Parini A, Kunduzova O (2012) Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33(18):2360–2369. doi:10.1093/eurheartj/ehr389

    CAS  PubMed  Google Scholar 

  111. Koguchi W, Kobayashi N, Takeshima H, Ishikawa M, Sugiyama F, Ishimitsu T (2012) Cardioprotective effect of apelin-13 on cardiac performance and remodeling in end-stage heart failure. Circ J 76(1):137–144

    CAS  PubMed  Google Scholar 

  112. Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86(12):1259–1265

    CAS  PubMed  Google Scholar 

  113. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52(1):11–34

    CAS  PubMed  Google Scholar 

  114. Sopel MJ, Rosin NL, Lee TD, Legare JF (2011) Myocardial fibrosis in response to Angiotensin II is preceded by the recruitment of mesenchymal progenitor cells. Lab Invest 91(4):565–578. doi:10.1038/labinvest.2010.190

    CAS  PubMed  Google Scholar 

  115. Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-kappaB in the heart: to be or not to NF-kappaB. Circ Res 108(9):1122–1132. doi:10.1161/CIRCRESAHA.110.226928

    CAS  PubMed  Google Scholar 

  116. Barnes GD, Alam S, Carter G, Pedersen CM, Lee KM, Hubbard TJ, Veitch S, Jeong H, White A, Cruden NL, Huson L, Japp AG, Newby DE (2013) Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure. Circ Heart Fail 6(3):482–491. doi:10.1161/CIRCHEARTFAILURE.111.000077

    CAS  PubMed  Google Scholar 

  117. Sorli SC, Le Gonidec S, Knibiehler B, Audigier Y (2007) Apelin is a potent activator of tumour neoangiogenesis. Oncogene 26(55):7692–7699. doi:10.1038/sj.onc.1210573

    CAS  PubMed  Google Scholar 

  118. Yang L, Su T, Lv D, **e F, Liu W, Cao J, Sheikh IA, Qin X, Li L, Chen L (2014) ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin 46(2):100–111. doi:10.1093/abbs/gmt140

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of the University and Research (Grant PRIN 2009) and the University of Turin (Grant ex60 %).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Rastaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folino, A., Montarolo, P.G., Samaja, M. et al. Effects of apelin on the cardiovascular system. Heart Fail Rev 20, 505–518 (2015). https://doi.org/10.1007/s10741-015-9475-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9475-x

Keywords

Navigation