Log in

Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Bone regeneration is impaired in patients with type 2 diabetes mellitus (T2DM), which leads to non-healing after bone loss. The decreased osteogenic capacity of bone mesenchymal stem cells (BMSCs) might be a main reason. Sema3A, as a powerful protein promoting osteocyte differentiation, shows potential for bone regeneration treatment. BMSCs may be a therapeutic solution. In this study, we divided BMSCs from T2DM rats (BMSCs-D) and normal rats (BMSCs-N), identified their ability to differentiate into different cell types. Then we found decreased expression of Sema3A in BMSCs-D compared with BMSCs-N. Stimulating with Sema3A showed no influence in the proliferation or migration of BMSCs. However, Sema3A stimulation significantly increased the expression of osteogenic‑related genes, including type I collagen, alkaline phosphatase, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein and osteocalcin. Besides, the osteogenic capacity of BMSCs was also increased by Sema3A stimulation. In conclusion, we proved that exogenous Sema3A stimulation might repair the osteogenic capacity of BMSCs-D, thus providing a new strategy for restoring the impaired bone regeneration ability for T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham NG, Li M, Vanella L, Peterson SJ, Ikehara S, Asprinio D (2008) Bone marrow stem cell transplant into intra-bone cavity prevents type 2 diabetes: role of heme oxygenase-adiponectin. J Autoimmun 30:128–135

    Article  PubMed  CAS  Google Scholar 

  • Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–528

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar B, Mekala NK, Baadhe RR, Rao PS (2014) Role of signaling pathways in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther 9:508–512

    Article  PubMed  CAS  Google Scholar 

  • Camargo WA, de Vries R, van Luijk J, Hoekstra JW, Bronkhorst EM, Jansen JA, van den Beucken J (2017). Diabetes mellitus and bone regeneration: A systematic review and meta-analysis of animal studies. Tissue Eng Part B Rev 23, 471–479

    Article  PubMed  Google Scholar 

  • Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, Alt EU, Izadpanah R (2010) Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 19:1875–1884

    Article  PubMed  CAS  Google Scholar 

  • Dacquin R, Starbuck M, Schinke T, Karsenty G (2002) Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev Dyn 224:245–251

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Guo T, Li J, Guo L, Gu P, Fan X (2017). Repair of calvarial bone defect using jarid1a-knockdown bone mesenchymal stem cells in rats. Tissue Eng Part A. https://doi.org/10.1089/ten.tea.2017.0168

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang K, Song W, Wang L, Jia S, Wei H, Ren S, Xu X, Song Y (2014) Immobilization of chitosan film containing semaphorin 3A onto a microarc oxidized titanium implant surface via silane reaction to improve MG63 osteogenic differentiation. Int J Nanomed 9:4649–4657

    CAS  Google Scholar 

  • Fang K, Song W, Wang L, Xu X, Tan N, Zhang S, Wei H, Song Y (2016) Semaphorin 3A-modified adipose-derived stem cell sheet may improve osseointegration in a type 2 diabetes mellitus rat model. Mol Med Rep 14:2449–2456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiorellini JP, Chen PK, Nevins M, Nevins ML (2000) A retrospective study of dental implants in diabetic patients. Int J Periodontics Restorative Dent 20:366–373

    PubMed  CAS  Google Scholar 

  • Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM, Srinivasan N (2006) Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol 84:93–101

    Article  PubMed  CAS  Google Scholar 

  • Gusić N, Ivković A, VaFaye J, Vukasović A, Ivković J, Hudetz D, Janković S (2014) Nanobiotechnology and bone regeneration: a mini-review. Int Orthop 38:1877–1884

    Article  PubMed  Google Scholar 

  • Hamann C, Goettsch C, Mettelsiefen J, Henkenjohann V, Rauner M, Hempel U, Bernhardt R, Fratzl-Zelman N, Roschger P, Rammelt S et al (2011) Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am J Physiol Endocrinol Metab 301:E1220-E1228

    Article  CAS  Google Scholar 

  • Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012). Osteoprotection by semaphorin 3A. Nature 485:69–74

    Article  PubMed  CAS  Google Scholar 

  • He H, Liu R, Desta T, Leone C, Gerstenfeld LC, Graves DT (2004). Diabetes causes decreased osteoclastogenesis, reduced bone formation, and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology 145:447–452

    Article  PubMed  CAS  Google Scholar 

  • Kawashima Y, Fritton JC, Yakar S, Epstein S, Schaffler MB, Jepsen KJ, LeRoith D (2009). Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis. Bone 44:648–655

    Article  PubMed  Google Scholar 

  • Kolodkin AL, Matthes DJ, O’Connor TP, Patel NH, Admon A, Bentley D, Goodman CS (1992) Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9:831–845

    Article  PubMed  CAS  Google Scholar 

  • Lapmanee S, Charoenphandhu N, Aeimlapa R, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Chaimongkolnukul K, Seriwatanachai D, Krishnamra N (2014) High dietary cholesterol masks type 2 diabetes-induced osteopenia and changes in bone microstructure in rats. Lipids 49:975–986

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Hao J, Duan X, Wu N, Zhou Z, Yang F, Li J, Zhao Z, Huang S (2017) The role of semaphorin 3A in bone remodeling. Front Cell Neurosci 11:40

    PubMed  PubMed Central  Google Scholar 

  • Lin J, Shao J, Juan L, Yu W, Song X, Liu P, Weng W, Xu J, Mehl C (2017). Enhancing bone regeneration by combining mesenchymal stem cell sheets with beta-TCP/COL-I scaffolds. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.34003

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu X, Tan N, Zhou Y, Zhou X, Chen H, Wei H, Chen J, Xu X, Zhang S, Yang G et al. (2016). Semaphorin 3A shifts adipose mesenchymal stem cells towards osteogenic phenotype and promotes bone regeneration in vivo. Stem Cells Int 2016:2545214

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yang X, Maureira P, Falanga A, Marie V, Gauchotte G, Poussier S, Groubatch F, Marie PY, Tran N (2017) Permanently hypoxic cell culture yields rat bone marrow mesenchymal cells with higher therapeutic potential in the treatment of chronic myocardial infarction. Cell Physiol Biochem 44:1064–1077

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Shepherd I, Li J, Renzi MJ, Chang S, Raper JA (1995) A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 14:1131–1140

    Article  PubMed  CAS  Google Scholar 

  • Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K (2018). The impact of type 2 diabetes on bone fracture healing. Front Endocrinol (Lausanne) 9:6

    Article  Google Scholar 

  • Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579

    Article  PubMed  CAS  Google Scholar 

  • Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada K, Stolk L, Oei EH, van Meurs JB, Janssen JA et al (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabet Care 36:1619–1628

    Article  CAS  Google Scholar 

  • Rodda SJ, McMahon AP (2006). Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244

    Article  PubMed  CAS  Google Scholar 

  • Salah RA, Mohamed IK, El-Badri N (2018). Development of decellularized amniotic membrane as a bioscaffold for bone marrow-derived mesenchymal stem cells: ultrastructural study. J Mol Histol 49(3):289–301

    Article  CAS  Google Scholar 

  • Sun XK, Zhou J, Zhang L, Ma T, Wang YH, Yang YM, Tang YT, Li H, Wang LJ (2017) Down-regulation of Noggin and miR-138 coordinately promote osteogenesis of mesenchymal stem cells. J Mol Histol 48:427–436

    Article  PubMed  CAS  Google Scholar 

  • Tang P, Yin P, Lv H, Zhang L, Zhang L (2015) The Role of Semaphorin 3A In The Skeletal System. Crit Rev Eukaryot Gene Expr 25:47–57

    Article  PubMed  CAS  Google Scholar 

  • Villarino ME, Sanchez LM, Bozal CB, Ubios AM (2006) Influence of short-term diabetes on osteocytic lacunae of alveolar bone. A histomorphometric study. Acta Odontol Latinoam 19:23–28

    PubMed  Google Scholar 

  • Yan W, Li X (2013) Impact of diabetes and its treatments on skeletal diseases. Front Med 7:81–90

    Article  PubMed  Google Scholar 

  • Ye Y, Feng TT, Peng YR, Hu SQ, Xu T (2018) The treatment of spinal cord injury in rats using bone marrow-derived neural-like cells induced by cerebrospinal fluid. Neurosci Lett 666:85–91

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, **e XF, **ong YQ, Liu SM, Hu GZ, Cao WF, Wu XM (2018) Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Res 1680:143–154

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Liu Q, Xu B (2018) Improvement of bone defect healing in rats via mesenchymal stem cell supernatant. Exp Ther Med 15:1500–1504

    PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China [NO. 81470775]. Department of Burns and Cutaneous Surgery provided most of the equipment of experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Q., Xu, X., Song, Y. et al. Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats. J Mol Hist 49, 369–376 (2018). https://doi.org/10.1007/s10735-018-9776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-018-9776-1

Keywords

Navigation