Log in

OsNAC45 plays complex roles by mediating POD activity and the expression of development-related genes under various abiotic stresses in rice root

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

OsNAC45 belongs to the NAC family of (for NAM/ATAF1/2/CUC2) transcription factors, which play an important role in plant development and abiotic stress responses. Transgenic rice plants overexpressing OsNAC45 have exhibited improved tolerance to salt and drought stress. This study aimed to investigate the mechanism underlying the effects of OsNAC45 on root development under abiotic stress in rice Zhonghua11 (ZH11) (Oryza sativa L.). The OsNAC45 GUS expression was strong in roots of the adult stage, weak in the seedling stage, and induced by low-temperature stress in the seedling stage. Under NaCl and low temperature stress, the OsNAC45 overexpression (OE) lines exhibited maintenance of root structure and normal growth of the seedling root, but the RNAi lines of OsNAC45 were more sensitive. The roots of the OE lines accumulated less superoxide anion under low temperature stress and more hydrogen peroxide under normal conditions than WT. After NaCl treatment, the Peroxidase (POD) assay showed POD activity of the roots in OE lines were elevated, but were decreased in RNAi lines and WT; additionally, the increment of lignin content in OE lines was significantly higher than RNAi lines and WT in roots. Furthermore, expression levels of some rice root development-related genes were altered in the transgenic plants. Under cold and salt stresses, expression of NCED4, a key enzyme in abscisic acid synthesis, was decreased in OE lines and raised in RNAi lines compared to WT. The data suggests that OsNAC45 may participate in the response of cold/salt stresses by lessening the accumulation of reactive oxygen species and increasing lignin in rice roots thus alleviating the restraint to the growth of seedling root. Overexpression of OsNAC45 weakened the high temperature tolerance; however, inhibiting its expression could improve the tolerance. Together, these results indicate that OsNAC45 plays an important role in the coordination, development, and response of rice plants under abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An X, Liao Y, Zhang J, Dai L, Zhang N, Wang B et al (2015) Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regul 76(2):211–223

    Article  CAS  Google Scholar 

  • Bennett T, van den Toorn A, Sanchez-Perez GF, Campilho A, Willemsen V, Snel B et al (2010) SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis. Plant Cell 22(3):640–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, You J, **e K, **e W, **ong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genom 280:547–563

    Article  CAS  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X et al (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53(372):1249–1254

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M et al (2004) A dehydration induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Furuta KM, Yadav SR, Lehesranta S, Belevich I, Miyashima S, Heo JO et al (2014) Plant development: Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345(6199):933–937

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Shen YP, Ma LG, Pan Y, Du YL, Wang DH et al (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol 135:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Wang F, Song J, Sun W, Zhang XS (2010) The expression of Orysa;CycB1;1 is essential for endosperm formation and causes embryo enlargement in rice. Planta 231(2):293–303

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development. Plant J 44(6):903–916

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, **ao B, Li X, Zhang Q,et al (2006) Overexpressing a NAM, ATAF and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y,et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW et al (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotech J 11:101–114

    Article  CAS  Google Scholar 

  • Jia L, Zhang B, Mao C, Li J, Wu Y, Wu P et al (2008) OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativaL.). Planta 228:51–59

    Article  CAS  PubMed  Google Scholar 

  • Kadier Y, Zu Y, Dai Q, Song G, Lin S, Sun Q et al (2017) Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regul 83(2):301–312

    Article  CAS  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH et al. (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153(2):402–412

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Kao C (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Yin CC, He SJ, Lu X, Zhang WK, Lu TG, Chen SY, Zhang JS (2014) Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet 10(10):e1004701

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17(11):2993–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Niu F, Wang C, Yan J, Guo X, Wu F, Yang B,et al (2016) Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napusL.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death. Plant Mol Biol 92(1–2):89–104

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H,et al (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni A, Satoh K, Karim MR, Harikrishna JA, Shimizu T et al (2015) NAC transcription factor family genes are differentially expressed in rice during infections with Rice dwarf virus, Rice black-streaked dwarf virus, Rice grassy stunt virus, Rice ragged stunt virus and Rice transitory yellowing virus. Front Plant Sci 6:676. https://doi.org/10.3389/fpls.2015.00676

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Růzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Kim YS, Han SH, Lee BD, Paek NC (2015a) The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27(6):1771–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, An G et al (2015b) Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol 56(12):2325–2339

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Naik D, Reddy AR (2015) Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: a structure-function update. J Plant Physiol 179:40–55

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Yin Y, Chen F, Xu Y, Dixon RA (2009) Bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. BioEnergy Res 2:217–232

    Article  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Wang HZ, Dixon RA (2012) On-off switches for secondary cell wall biosynthesis. Mol Plant 5(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B et al (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • **e Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59:191–203

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Kim SY, Hyeon do Y, Kim DH, Dong T, Park Y et al (2013) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25(11):4708–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33:217–224

    Article  CAS  Google Scholar 

  • Yang SD, Seo PJ, Yoon HK, Park CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23:2155–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZT, Wang MJ, Sun L, Lu SJ, Bi DL (2014) The Membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet 10(3):e1004243

    Article  PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Liu Y, Wang S, Tao Y, Wang Z, Mijiti A et al (2016) A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis. Plant Growth Regul 79(2):187–197

    Article  CAS  Google Scholar 

  • Zhao L, Hu Y, Chong K, Wang T (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot 105(3):401–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Ye ZH (2010) Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant 3:1087–1103

  • Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y (2013) Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol 13:132. https://doi.org/10.1186/1471-2229-13-132

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (30900070), National Key Technologies R&D Program of China (2016ZX08001003-004) and Shanghai Youth Science Talents to Sail Plan (15YF1410600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Chen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Huang, A., Li, J. et al. OsNAC45 plays complex roles by mediating POD activity and the expression of development-related genes under various abiotic stresses in rice root. Plant Growth Regul 84, 519–531 (2018). https://doi.org/10.1007/s10725-017-0358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0358-0

Keywords

Navigation