Log in

Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of Gladiolus cut flowers

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

An experiment was conducted to study the effect of 5-sulfosalicylic acid (5-SSA) on the vase life of cut flowers of Gladiolus grandiflora variety ‘Green Willow’. The vase solution having 5-SSA significantly increased cumulative uptake of vase solution, vase life, number of opened florets and decreased the number of unopened florets compared to the controls. Spikes kept in vase solution containing 5-SSA also exhibited lower respiration rates, lipid peroxidation and lipoxygenase (LOX) activity, and higher membrane stability, soluble protein concentration, and activity of superoxide dismutase (SOD) and catalase. Results suggest that 5-SSA increases vase life by increasing the reactive oxygen species (ROS) scavenging activity of the Gladiolus cut flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAT:

Catalase

LOX:

Lipoxygenase

MSI:

Membrane stability index

ROS:

Reactive oxygen species

5-SSA:

5-Sulfosalicylic acid

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidant system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase – a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 55:235–241

    Article  Google Scholar 

  • Baker JE, Wang CY, Terlizzi DE (1985) Delay of senescence in carnations by pyrazon, phenidone analogues and Tiron. Hort Sci 20:121–122

    CAS  Google Scholar 

  • Baker JE, Lalang CY, Lieberman M, Hardonberg R (1977) Delay of senescence in Carnation by a rhizobitoxine analog and sodium benzoate. Hort Sci 12:28–39

    Google Scholar 

  • Baker JE, Lieberman M, Anderson JD (1978) Inhibition of ethylene production in fruit slices by rhizobitoxine analogs and free radical scavengers. Plant Physiol 61:886–888

    PubMed  CAS  Google Scholar 

  • Bieleski RL, Reid MS (1992) Physiological changes accompanying senescence in the ephemeral daylily flower. Plant Physiol 98:1042–1049

    PubMed  CAS  Google Scholar 

  • Borochov A, Spiegelstein H, Porat R, Field T (1995) Membrane lipids involved in the regulation of flower senescence. Acta Hort 405:240–245

    CAS  Google Scholar 

  • Bowler C, Van Montague M, Inje D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence – a genomics approach. Plant Biotechnol J 1:3–22

    Article  PubMed  CAS  Google Scholar 

  • Bueno P, del Rio LA (1992) Purification and properties of glyoxysomal cuperozinc superoxide dismutase from water melon (Citrullus vulgaris Scrad.). Plant Physiol 98:331–336

    PubMed  CAS  Google Scholar 

  • Celikel FG, Van Doorn WG (1995) Solute leakage, lipid peroxidation and protein degradation during the senescence of Iris petals. Physiol Plant 94:515–521

    Article  CAS  Google Scholar 

  • Chia LS, Thompson JE, Dumbroff EB (1981) Stimulation of leaf senescence on membranes by treatment with paraquat. Plant Physiol 67:415–420

    PubMed  CAS  Google Scholar 

  • del Rio LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radical Biol Med 13:557–580

    Article  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa D, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Doderer A, Kokkelink I, Van der Veen S, Valk BE, Schram AW, Douma AC (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochem Biophys Acta 1120:97–104

    PubMed  CAS  Google Scholar 

  • Droillard MJ, Paulin A (1987) Evolution of polar lipids and superoxide dismutase and catalase activities during the senescence of petals of cut carnations (Dianthus caryophyllus L. cv. Ember). Comptos Rendes des Scances Del Academic des Sciences-III Sciences de la vie 305:439–442

    CAS  Google Scholar 

  • Eason JR, de Vr e’ L (1995) Ethylene-insensitive floral senescence in Sandersonia aurantiaca (Hook.). N Z J Crop Hort Sci 23:447–454

    Google Scholar 

  • Ezhilmathi K (2001) Physiological and biochemical studies of senescence in Gladiolus. MSc Thesis, Indian Agricultural Research Institute, New Delhi-110012, India

  • Foyer CH (1993) Ascorbic acid. In: Alscher RC, Hess JL (eds) Antioxidants in higher plants. CRC Press, Boca Raton, pp 31–58

    Google Scholar 

  • Fukuchi-Mizutani M, Ishiguro K, Nakayuama T, Utsunomia Y, Tanaka Y, Kusumi T, Ueda T (2000) Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Sci 160:129–137

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Kende H (1975) Ethylene enhanced ion and sucrose efflux in morning glory flower tissue. Plant Physiol 55:663–669

    PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Jones R, McConchie R (1995) Characteristics of petal senescence in a non-climacteric cut flower. Acta Hort 405:216–223

    Google Scholar 

  • Jones RB, Serek M, Kuo CL, Reid MS (1994) The effect of protein synthesis inhibition on petal senescence in cut bulb flowers. J Am Soc Hort Sci 119:1243–1247

    CAS  Google Scholar 

  • Kellogg DE (1975) The role of phyletic change in the evolution of Pseudocubus vema Radiolaria. Paleobiol 1:359–370

    Google Scholar 

  • Kenis JD, Silvente ST, Trippi VS (1985) Nitrogen metabolism and senescence associated changes during growth of Carnation flowers (Dianthus caryophyllus). Physiol Plant 65:455–459

    Article  CAS  Google Scholar 

  • Kunert KJ, Ederer M (1985) Leaf aging and lipid peroxidation: the role of the antioxidants vitamin C, and E. Physiol Plant 65:85–88

    Article  CAS  Google Scholar 

  • Lay-Yee M, Stead AD, Reid MS (1992) Flower senescence in daylily (Haemerocallis). Physiol Plant 86:308–314

    Article  CAS  Google Scholar 

  • Leopold AC (1975) Aging, senescence and turnover in plants. Bio Sci 25:659–662

    Google Scholar 

  • Lynch DV, Thompson JE (1984) Lipoxygenase mediated production of superoxide anion in senescing plant tissue. FEBS Lett 173:251–254

    Article  CAS  Google Scholar 

  • Mayak S, Halevy AH (1980) Flower senescence. In: Thimann K (ed) Senescence in plants. CRC Press, Boca Raton, FL, pp 131–156

    Google Scholar 

  • Mayak S, Borochov A, Tirosh T (1985) Transient water stress in carnation flowers: effect of amino-oxyacetic acid. J Expt Bot 36:800–806

    Article  CAS  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of Daylily (Hemerocallis hybrid) petals. Plant Sci 133:125–138

    Article  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Expt Biol 32:584–593

    Google Scholar 

  • Sairam RK, Singh DV, Srivastava GC (2003/04) Changes in activities of antioxidant enzymes in sunflower leaves of different age. Biol Plant 47:61–66

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Serek M, Tamari G, Sisler EC, Borochov A (1995) Inhibition of ethylene-induced senescence symptoms by 1-methyl cyclopropene, a new inhibitor of ethylene action. Phyisol Plant 94:229–232

    Article  CAS  Google Scholar 

  • Suttle JC, Kende H (1978) Ethylene and senescence in petals of Tradescantia. Plant Physiol 62:267–271

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre I, Droillard MJ, Bureau JM, Paulin A (1989) Effects of the ethylene rise on the peroxidation of membrane lipids during senescence of cut Carnations. Plant Physiol Biochem 27:407–413

    CAS  Google Scholar 

  • Thompson JE, Legge RL, Barber RL (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–334

    Article  CAS  Google Scholar 

  • Thompson SE (1974) The behaviour of cytoplasmic membranes in Phaseolus vulgaris cotyledon during germination. Can J Bot 2:534–541

    Google Scholar 

  • Van Doorn WG, Stead AD (1994) The physiology of petal senescence which is not initiated by ethylene. In: Scott RJ, Stead AD (eds) Molecular and cellular aspects of plant reproduction. Cambridge University Press, Cambridge, UK, pp 239–254

  • Van Meeteren Y (1979) Water relations and kee** quality of cut Gerbera flowers VI. Water content, permeability and dry weight of ageing petals. Sci Hort 10:261–269

    Article  Google Scholar 

  • Watada AE, Herner RC, Kader AA, Romani RJ, Staby GL (1984) Terminology for the description of developmental stages of horticultural crops. Hort Sci 19:20–21

    Google Scholar 

  • Woltering EJ, Van Doorn WG (1988) Role of ethylene in senescence of petals – morphological and taxonomical relationship. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Woodson WR, Handa AK (1987) Changes in protein patterns and in vivo protein synthesis during pre senescence and senescence of Hibiscus petals. J Plant Physiol 128:67–75

    CAS  Google Scholar 

  • Woolhouse HW (1984) The biochemistry and regulation of senescence in chloroplasts. Can J Bot 62:2934–2942

    CAS  Google Scholar 

  • Yamane K, Ogata R (1995) Effect of cycloheximide on physiological parameters of Gladiolus florets during growth and senescence. J Jap Soc Hort Sci 64:411–416

    CAS  Google Scholar 

  • Yamane K, Abiru S, Fujishige N, Sakiyama R, Ogata R (1993) Export of soluble sugars and increase in membrane permeability of cut Gladiolus florets during senescence. J Jap Soc Hort Sci 62:575–580

    CAS  Google Scholar 

  • Yamane K, Kawabata S, Fujishige N (1999) Changes in activities of SOD, catalase and peroxidases during senescence of Gladiolus florets. J Jap Soc Hort Sci 68:798–802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sairam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezhilmathi, K., Singh, V.P., Arora, A. et al. Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of Gladiolus cut flowers. Plant Growth Regul 51, 99–108 (2007). https://doi.org/10.1007/s10725-006-9142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-006-9142-2

Keywords

Navigation