Log in

From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis

  • Review Paper
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Wheat (Triticum spp.) is a universally lucrative agricultural crop. An increase in wheat production has been shown through selection by the farmers which can increase the grain profitability. The determination of genetic associations among domestic cultivars is facilitated by molecular markers. Data on genetic polymorphism is valuable for the germplasm association and regarding the develo** management strategies. The information would be supportive for potential genome map** programs and for the relevance of intellectual property rights of wheat breeders. Present review is an effort for providing support information to wheat breeders to develop varieties with varied genetic environment to attain continuity in large-scale wheat production. In this review, we have tried to provide a collective depiction of relevant information about the usage of some commonly used markers in wheat. It may help researchers to find out the frequentness and application of different markers and compare their results. The manuscript may serve as a platform hel** the intellectuals for the selection and modification of their marker system in wheat diversity analysis. The heart of this review is the emphasis on the performance of various molecular genetic markers in diversity studies in relation to definite approaches that are in practice since several years allied with the multifaceted wheat molecular breeding and its polyploid nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas SA, Shah SRU, Rasool G, Iqbal A (2008) Analysis of genetic diversity in Pakistani wheat varieties by using randomly amplified polymorphic DNA (RAPD) primers. Am Eur J Sust Agric 2:29–33

    Google Scholar 

  • Abd-El-Haleem SHM, Reham MA, Mohamed SM (2009) Genetic analysis and RAPD polymorphism in some Durum wheat genotypes. Glob J Biotechnol Biochem 4:1–9

    CAS  Google Scholar 

  • Ahmad M (2002) Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45:646–651

    CAS  PubMed  Google Scholar 

  • Ahmed MF, Iqbal M, Masood MS, Rabbani MA, Munir M, Shah PMA (2010) Assessment of genetic diversity among Pakistani wheat (Triticum aestivum L.) advanced breeding lines using RAPD and SDS-PAGE. Elect J Biotechnol 13(3):1–2. doi:10.2225/vol13-issue3-fulltext-2

  • Akbari M, Wenzl P, Caig V, Carling J, **a L, Yang S et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    CAS  PubMed  Google Scholar 

  • Akfirat FS, Uncuoglu AA (2013) Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers. Biochem Genet 51:223–229

    Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genoty** in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akkaya MS, Buyukunal-Bal EB (2004) Assessment of genetic variation of bread wheat varieties using microsatellite markers. Euphytica 135:179–185

    CAS  Google Scholar 

  • Akram A, Khan AI, Awan FS, Rehman A, Ahmad F, Malik A et al (2012) Genetic diversity in Indian sub-continental landrace cultivars of the genus Triticum L. Afr J Biotechnol 11:10170–10175

    Google Scholar 

  • Alamerew S, Chebotar S, Huang X, Röder MS, Börner A (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet Resour Crop Evol 51:559–567

    CAS  Google Scholar 

  • Alan HS (2007) Molecular markers to assess gentic diversity. Euphytica 158:313–321

    Google Scholar 

  • Al-Doss AA, Moustafa KA, Ahmed EI, Elshafei AA, Barakat MN (2009) Assessment of genetic diversity in Saudi wheat genotypes under heat stress using molecular markers and agronomic traits. Int J Plant Breed. Glob Sci Books 3:103–110

    Google Scholar 

  • Al-Fares H, Abu-Qaoud H (2012) Molecular characterization of genetic diversity in some durum wheat (Triticum durum Desf.) in Palestine. Afr J Biotechnol 11:12958–12963

    CAS  Google Scholar 

  • Aliyev RT, Abbasov MA, Mammadov AC (2007) Genetic identification of diploid and tetraploid wheat species with RAPD markers. Turk J Biol 31:173–180

    CAS  Google Scholar 

  • Almanza-Pinzon I, Khairallah M, Fox PN, Warburton ML (2003) Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130:77–86

    CAS  Google Scholar 

  • Al-Rawashdeh IM, Al-Rawashdeh NQ (2011) Exploring genetic diversity in Jordanian wheat landraces collected from different agro-ecological regions using random amplified polymorphic DNA analysis. Int J Agric Biol 13:325–331

    CAS  Google Scholar 

  • Altıntas S, Toklu F, Kafkas S, Kilian B, Brandolini A, Ozkan H (2008) Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breed 127:9–14

    Google Scholar 

  • Amer IMB, Börner A, Röder MS (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Genet Resour Crop Evol 48:579–585

    Google Scholar 

  • Anand A, Gupta AK, Teshale ET, Mishra A, Khanna VK (2008) Phylogenetic relationship to study the ploidy status and resistance to Karnal bunt in Indian wheat culivars using RAPD technique. Biotechnology 7:430–438

    CAS  Google Scholar 

  • Archak S, Gaikwad AB, Gautam D, Rao EV, Swamy KR, Karihaloo JL (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46:362–369

    CAS  PubMed  Google Scholar 

  • Asif M, Rahman M, Zafar Y (2005) DNA fingerprinting studies of some wheat (Triticum aestivum L.) genotypes using random amplified polymorphic DNA (RAPD) analysis. Pak J Bot 37:271–277

    Google Scholar 

  • Atchison J, Head L, Gates A (2010) Wheat as food, wheat as industrial substance; comparative geographies of transformation and mobility. Geoforum 41:236–246

    Google Scholar 

  • Autrique E, Nachit MM, Monneveux P, Tanksley SD, Sorrells ME (1996) Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci 36:735–742

    Google Scholar 

  • Badea AFE, Salmon D, Tuvesson S, Vrolijk A, Larsson C-T, Caig V et al (2011) Development and assessment of DArT markers in triticale. Theor Appl Genet 122:1547–1560

    CAS  PubMed  Google Scholar 

  • Baghizadeh A, Khosravi S (2011) Genetic diversity assessment of Aegilops germplasm by RAPD molecular markers. Agric Biol J N Am 2:197–202

    CAS  Google Scholar 

  • Bainotti C, Fraschina J, Salines JH, Nisi JE, Dubcovsky J, Lewis SM et al (2009) Registration of ‘BIOINTA 2004 Wheat. J Plant Regist 3:165–169

    Google Scholar 

  • Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS et al (2004) DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST–SSRs. Plant Sci 166:349–356

    CAS  Google Scholar 

  • Barcaccia G, Molinari L, Porfiri O, Veronesi F (2002) Molecular characterization of emmer (Triticum dicoccon Schrank) Italian landraces. Genet Resour Crop Evol 49:415–426

    Google Scholar 

  • Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271

    CAS  Google Scholar 

  • Barrett BA, Kidwell KK, Fox PN (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci 38:1271–1278

    CAS  Google Scholar 

  • Bered F, Barbosa-Neto JF, de Carvalho FIF (2002) Genetic variability in common wheat germplasm based on coefficients of parentage. Genet Mol Biol 25:211–215

    CAS  Google Scholar 

  • Bertan I, de Carvalho FIF, de Oliveira AC, Benin G, Vieira EA, Valerio IP (2009) Morphological, pedigree, and molecular distances and their association with hybrid wheat performance. Pesqui Agropecu Bras 44:155–163

    Google Scholar 

  • Bertin P, Gregoire D, Massart S, Froidmont D (2001) Genetic diversity among European cultivated spelt revealed by microsatellites. Theor Appl Genet 102:148–156

    CAS  Google Scholar 

  • Bertin P, Gregoire D, Massart S, Froidmont D (2004) High level of genetic diversity among spelt germplasm revealed by microsatellite markers. Genome 47:1043–1052

    CAS  PubMed  Google Scholar 

  • Beuningen LTV, Busch RH (1997) Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Sci 37:981–988

    Google Scholar 

  • Bhutta WM (2007) Biochemical and molecular characterization of wheat genotypes determined by RAPD analysis. Acta Agric Scand B 57:335–341

    CAS  Google Scholar 

  • Bhutta WM, Shahzad A, Akhtar J, Ibrahim M (2005) Assessment of genetic divergence among wheat (Triticum aestivum) genotypes using random amplified polymorphic DNA (RAPD) analysis. Biol Brat 60:671–674

    CAS  Google Scholar 

  • Bhutta WM, Akhtar J, Ibrahim M, Shahzad A (2006) Genetic variation between Pakistani wheat (Triticum aestivum L.) genotypes as revealed by random amplified polymorphic DNA (RAPD) markers. S. Afr J Bot 72:280–283

    Google Scholar 

  • Bibi S, Dahot MU, Khan IA, Khatri A, Naqvi MH (2009) Study of genetic diversity in wheat using random amplified polymorphic DNA (RAPD) markers. Pak J Bot 41:1023–1027

    CAS  Google Scholar 

  • Blake NK, Sherman JD, Dvorak J, Talbert LE (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302

    CAS  PubMed  Google Scholar 

  • Bohn M, Friedrich UH, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    CAS  Google Scholar 

  • Borner A, Chebotar S, Korzun V (2000) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet 100:494–497

    CAS  Google Scholar 

  • Botstein B, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bousba R, Baum M, Djekoune A, Labadidi S, Djighly A (2012) Screening for drought tolerance using molecular markers and phenotypic diversity in durum wheat genotypes. World Appl Sci J 16:1219–1226

    Google Scholar 

  • Brookes A (1999) The essence of SNPs. Gene 234:177–186

    CAS  PubMed  Google Scholar 

  • Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterization of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563

    CAS  Google Scholar 

  • Burkhamer RL, Lanning SP, Martens RJ, Martin JM, Talbert LE (1998) Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci 38:243–248

    Google Scholar 

  • Cao WG, Hucl P, Scoles G, Chibbar RN (1998) Genetic diversity within spelta and macha wheats based on RAPD analysis. Euphytica 104:181–189

    Google Scholar 

  • Cao W, Scoles G, Hucl P, Chibbar RN (1999) The use of RAPD analysis to classify Triticum accessions. Theor Appl Genet 98:602–607

    CAS  Google Scholar 

  • Cao W, Scoles G, Huci P (2000) Phylogenetic relationships of five morphological groups of hexaploid wheat (T. aestivum L. em Thell.) based on RAPD analysis. Genome 43:724–727

    CAS  PubMed  Google Scholar 

  • Cao W, Hucl P, Scoles G, Chibbar RN, Fox PN, Skovmand B (2002) Cultivar identification and pedigree assessment of common wheat based on RAPD analysis. Wheat Info Ser 95:29–35

    Google Scholar 

  • Carvalho A, Lima-Brito J, Macas B, Guedes-Pinto H (2009) Genetic diversity and variation among botanical varieties of old Portuguese wheat cultivars revealedby ISSR. Biochem Genet 47:276–294

    CAS  PubMed  Google Scholar 

  • Castagna R, Gnocchi S, Perenzin M (1997) Genetic variability of the wild diploid wheat Triticum urartu revealed by RFLP and RAPD markers. Theor Appl Genet 94:424–430

    CAS  Google Scholar 

  • Cavanagh CR, Chaob S, Wangc S, Huang BE, Stuart Stephena S, Kianic S (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cenkci S, Yildiz M, Konuk M, Eren Y (2008) RAPD analyses of some wild Triticum L. and Aegilops L. species and Wheat cultivars in Turkey. Acta Biol Crac 5:35–42

    Google Scholar 

  • Chabane K, Abdalla O, Sayed H, Valkoun J (2007) Assessment of EST-microsatellites markers for discrimination and genetic diversity in bread and durum wheat landraces from Afghanistan. Genet Res Crop Evol 54:1073–1080

    CAS  Google Scholar 

  • Chabane K, Varshney RK, Graner A, Valkoun J (2008) Generation and exploitation of EST-derived SSR markers for assaying molecular diversity in durum wheat populations. Genet Res Crop Evol 55:869–881

    CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD (1989) RFLP based genetic maps of wheat homeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    CAS  PubMed  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different marker classes. Crop Sci 47:1018–1030

    CAS  Google Scholar 

  • Chao S, Zhang W, Akhunov W, Sherman J, Ma Y, Luo M et al (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23:23–33

    CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo M, Baenziger SP, Matnyazov R (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen HB, Martin JM, Lavin M, Talbert LE (1994) Genetic diversity in hard red spring wheat based on sequence tagged-site PCR markers. Crop Sci 34:1629–1632

    Google Scholar 

  • Chen X, Min D, Yasir TA, Hu Y-G (2012) Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE 7:e44510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cifci EA, Yagdi K (2012) Study of genetic diversity in wheat (Tritıcum aestivum L.) varities using random amplified polymorphic DNA (RAPD) analysis. Turk J Field Crops 17:91–95

    Google Scholar 

  • Colomba MS, Gregorini A (2011) Genetic diversity analysis of the durum wheat Graziella Ra, Triticum turgidum L. subsp. durum (Desf.) Husn. (Poales, Poaceae). Biodivers J 2:73–84

    Google Scholar 

  • Cox TS, Murphy JP, Rodgers DM (1986) Changes in genetic diversity in the red winter wheat regions of the United States. Proc Natl Acad Sci (USA) 83:5583–5586

    CAS  Google Scholar 

  • Czaplicki A, Borsuk P, Moraczewski I (2000) Molecular methods of identification of wheat varieties. J Biomol Struct Dyn 17:1129–1130

    Google Scholar 

  • Daetwyler HD, Hayden MJ, Bansal U, Bariana H, Hayes BJ (2013) Genomic selection for disease and morphological traits in diverse wheat landraces. Plant and Animal genome XXI Jan12–16 San-Diego, CA

  • Deynze AEV, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J et al (1995) Molecular-genetic maps for group—1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    CAS  PubMed  Google Scholar 

  • Dograr N, Akin-Yalin S, Akkaya MS (2000) Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers. Plant Breed 119:360–362

    CAS  Google Scholar 

  • Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Resour Crop Evol 45:415–421

    Google Scholar 

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Google Scholar 

  • Du JK, Yao YY, Ni ZF, Peng HR, Sun QX (2002) Genetic diversity revealed by ISSR molecular marker in common wheat, spelt, compactum and progeny of recurrent selection. Yi Chuan Xue Bao 29:445–452

    CAS  PubMed  Google Scholar 

  • Eivazi AR, Naghavi MR, Hajheidari M, Pirseyedi SM, Ghaffari MR, Mohammadi SA et al (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using quality traits, amplified fragment length polymorphisms, simple sequence repeats and proteome analysis. Ann Appl Biol 152:81–91

    CAS  Google Scholar 

  • Ejaz M, Iqbal M, Shahzad A, Rehman AU, Ahmed I, Ali GM (2012) Genetic variation for markers linked to stem rust resistance genes in Pakistani wheat varieties. Crop Sci 52:2638–2648

    Google Scholar 

  • El Ameen T (2013) Molecular markers for drought tolerance in bread wheat. Afr J Biotechnol 12:3148–3152

    Google Scholar 

  • El Siddig MA, Baenziger S, Dweikat I, El Hussein AA (2013) Preliminary screening for water stress tolerance and genetic diversity in wheat (Triticum aestivum L.) cultivars from Sudan. J Genet Eng Biotechnol 11:87–94

    Google Scholar 

  • El-Amin HKA, Hamza NB, Abuali AI (2011) Molecular and agronomical assessment of six wheat (Triticum aestivum L.) cultivars under salt-stress conditions. Int J Agric Res 6:163–171

    CAS  Google Scholar 

  • El-Maati FB, Jlibene M, Moumni M (2004) Study of the polymorphism of common wheat using ISSR markers. J Food Agric Environ 2:121–125

    Google Scholar 

  • El-Maghraby MA, Moussa ME, Hana NS, Agrama HA (2005) Combining ability under drought strees relative to SSR diversity in common wheat. Euphytica 141:301–308

    CAS  Google Scholar 

  • Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST–SSRs and genomic SSRs. Euphytica 119:39–43

    CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genoty** the A and B genomes of wheat. Theor Appl Genet 104:399–407

    CAS  PubMed  Google Scholar 

  • Fabrizius MA, Busch RH, Khan K, Huckle L (1998) Genetic diversity and heterosis of spring wheat crosses. Crop Sci 38:1108–1112

    Google Scholar 

  • Fadoul HE, El Siddig MA, El Hussein AA (2013) Assessment of genetic diversity among Sudanese wheat cultivars using RAPD markers. Int J Curr Sci 6:51–57

    Google Scholar 

  • Fahima T, Roder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195

    CAS  Google Scholar 

  • Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447

    CAS  Google Scholar 

  • Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29

    CAS  PubMed  Google Scholar 

  • FAO (1998) The state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome 510

    Google Scholar 

  • Figliuolo G, Perrino P (2004) Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. Revealed by RFLPs and SSRs. Genet Resour Crop Evol 51:519–527

    CAS  Google Scholar 

  • Figliuolo G, Spagnoletti-Zeuli PL (2000) A nested analysis to detect relationships between genetic markers and germplasm classes of durum wheat. Plant Genet Res Newsl 124:44–51

    Google Scholar 

  • Figliuolo G, Mazzeo M, Greco I (2007) Temporal variation of diversity in Italian durum wheat germplasm. Genet Resour Crop Evol 54:615–626

    Google Scholar 

  • Flavell RB, Smith DB (1976) Nucleotide sequence organization in wheat genome. Heredity 37:231–252

    Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press Inc., New York, USA, pp 613–684

    Google Scholar 

  • Freitas LB, Jerusalinsky L, Bonatto SL, Salzano FM (2000) Extreme homogeneity among Brazilian wheat genotypes determined by RAPD markers. Pesqui Agropecu Bras Brasilia 35:2255–2260

    Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganeva G, Korzun V, Landjeva S, Popova Z, Christov NK (2010) Genetic diversity assessment of Bulgarian durum wheat (Triticum durum Desf.) landraces and modern cultivars using microsatellite markers. Genet Resour Crop Evol 57:273–285

    CAS  Google Scholar 

  • Gao LF, **g RL, Huo NX, Li Y, Li XP, Zhou RH et al (2004) One hundred and one new microsatellite loci derived from ESTs (EST–SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    CAS  PubMed  Google Scholar 

  • Gorji AH, Zolnoori M (2011) Genetic diversity in hexaploid wheat genotypes using microsatellite markers. Asian J Biotechnol 3:368–377

    Google Scholar 

  • Grewal S, Kharb P, Malik R, Jain S, Jain RK (2007) Assessment of genetic diversity among some Indian wheat cultivars using random amplified polymorphic DNA (RAPD) markers. Ind J Biotechnol 6:18–23

    CAS  Google Scholar 

  • Grodzicker T, Anderson C, Sharp PA, Sambrook J (1974) Conditional lethal mutants of Adenovirus 2-simian virus 40 hybrids-I. Host range mutants of AD2 + ND1. J Virol 13:1237–1244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST–SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    CAS  PubMed  Google Scholar 

  • Gurung S, Bonman JM, Ali S, Patel J, Myrfield M, Mergoum M, Singh PK, Adhikari TB (2009) New and diverse sources of multiple disease resistance in wheat. Crop Sci 49:1655–1666

    CAS  Google Scholar 

  • Hailu F (2011) Genetic diversity and grain protein composition of tetraploid wheat (Triticum durum Desf.) germplasm from Ethiopia. Dissertation, Swedish University of Agricultural Sciences

  • Hakki EE, Savaskan C, Akkaya MS (2001) Genoty** of Anatolian doubled haploid durum lines with SSR markers. Euphytica 122:257–262

    CAS  Google Scholar 

  • Hao C, Wang L, Zhang X, You G, Dong Y, Jia J et al (2006) Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Sci China 49:218–226

    CAS  Google Scholar 

  • Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE 6:17279

    Google Scholar 

  • Hazen SP, Zhu L, Kim H, Tang G, Ward RW (2002) Genetic diversity of winter wheat in Shaanxi province, China, and other common wheat germplasm pools. Genet Resour Crop Evol 49:437–445

    Google Scholar 

  • Hernandez P, Laurie DA, Martin A, Snape JW (2002) Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theor Appl Genet 104:735–739

    CAS  PubMed  Google Scholar 

  • Hirano R, Kikuchi A, Kawase M, Watanabe KN (2008) Evaluation of genetic diversity of bread wheat landraces from Pakistan by AFLP and implications for a future collection strategy. Genet Resour Crop Evol 55:1007–1015

    Google Scholar 

  • Hu J, Quirose CF (1991) Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep 10:505–511

    CAS  PubMed  Google Scholar 

  • Huang XQ, Borner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    CAS  PubMed  Google Scholar 

  • Incirli A, Akkaya MS (2001) Assessment of genetic relationships in durum wheat cultivars using AFLP markers. Genet Resour Crop Evol 48:233–238

    Google Scholar 

  • Iqbal A, Khan AS, Khan IA, Awan FS, Ahmad A, Khan AA (2007) Study of genetic divergence among wheat genotypes through random amplified polymorphic DNA. Genet Mol Res 6:476–481

    CAS  PubMed  Google Scholar 

  • Irzykowska L, Zoltanska E, Bocianowski J (2005) Use of molecular and conventional techniques to identify and analyze genetic variability of Rhizoctonia spp. isolates. Acta Agro 59:19–32

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genoty**. Nucleic Acids Res 29:25

    Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    CAS  PubMed  Google Scholar 

  • James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618

    CAS  Google Scholar 

  • **g HC, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E et al (2009) DArT markers: diversity analyses, genomes comparison, map** and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458

    PubMed Central  PubMed  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    CAS  Google Scholar 

  • Joshi CP, Nguyen HT (1993a) Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheat. Genome 36:602–609

    CAS  PubMed  Google Scholar 

  • Joshi CP, Nguyen HT (1993b) RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci 93:95–103

    CAS  Google Scholar 

  • Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, Brar DS (2000) Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet 100:1311–1320

    CAS  Google Scholar 

  • Karakas O, Gurel F, Uncuoglu AA (2011) Assessment of genetic diversity of wheat genotypes by resistance gene analog-EST markers. Genet Mol Res 10:1098–1110

    CAS  PubMed  Google Scholar 

  • Khalighi M, Arzani A, Poursiahbidi MA (2008) Assessment of genetic diversity in Triticum spp. and Aegilops spp. Using AFLP markers. Afr J Biotechnol 7:546–552

    CAS  Google Scholar 

  • Khan IA, Awan FS, Ahmad A, Fu YB, Iqbal A (2005) Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genet Resour Crop Evol 52:239–244

    CAS  Google Scholar 

  • Khan AA, Iqbal A, Awan FS, Khan IA (2010) Genetic diversity in wheat germplasm collections from Balochistan province of Pakistan. Pak J Bot 42:89–96

    CAS  Google Scholar 

  • Khavarinejad MS, Karimov M (2012) Assessment of genetic diversity in wheat spring genotypes by molecular markers in northern Iran. Afr J Biotechnol 11:14724–14731

    CAS  Google Scholar 

  • Khlestkina EK, Salina EA (2006) SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Russ J Genet 42:585–594

    CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Efremova TT, Börner A, Shumny VK (2004) The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers. Plant Breed 123:122–127

    CAS  Google Scholar 

  • Kim HS, Ward RW (1997) Genetic diversity in Eastern U.S. soft winter wheat (Triticum aestivum L. em. Thell.) based on RFLPs and coefficient of parentage. Theor Appl Genet 94:472–479

    Google Scholar 

  • Kim HS, Ward RW (2000) Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica 115:197–208

    CAS  Google Scholar 

  • Kruglyak L (1997) The use of a genetic map of biallelic markers in linkage studies. Nat Genet 17:21–24

    CAS  PubMed  Google Scholar 

  • Kudryavstev AM, Martynov SP, Broggio M (2003) Relevance of RAPD analysis for revealing phylogenetic relationships between cultivars of durum wheat Triticum durum Desf. Russ J Genet 39:1043–1051

    Google Scholar 

  • Kumar R, Jaiswal SK, Vishwakarma MK, Rai VP, Upadhyay P, Joshi AK (2011) Assessment of genetic diversity and its usefulness for varietal identification in Indian elite varieties of wheat (T. aestivum L. em. Thell.) using RAPD markers. Asian J Biotehnol 3:460–469

    CAS  Google Scholar 

  • Lage J, Warburton ML, Crossa J, Skovmand B, Andersen SB (2003) Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica 134:305–317

    CAS  Google Scholar 

  • Landjeva S, Korzun V, Ganeva G (2006) Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Genet Resour Crop Evol 53:1605–1614

    CAS  Google Scholar 

  • Landjeva S, Korzun V, Börner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156:271–296

    CAS  Google Scholar 

  • Landry BS, Li RQ, Cheung WY, Graner RL (1994) Phylogeny analysis of 25 apple rootstocks using RAPD markers and tactical gene tagging. Theor Appl Genet 89:847–852

    CAS  PubMed  Google Scholar 

  • Law JR, Donini P, Koebner RMD, Reeves JC, Cooke RJ (1998) DNA profiling and plant variety registration. III. The statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102:335–342

    CAS  Google Scholar 

  • Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366

    CAS  Google Scholar 

  • Li W, Dong P, Wei Y, Cheng G, Zheng Y (2008) Genetic variation in Triticum turgidum L. ssp. turgidum landraces from China assessed by EST-SSR markers. Agric Sci China 7:1029–1036

    CAS  Google Scholar 

  • Lima VLA, Seki HA, Rumjanek FD (2003) Microsatellite polymorphism in wheat from Brazilian cultivars; inter- and intra-varietal studies. Genet Mol Bio 26:349–353

    CAS  Google Scholar 

  • Liu Y, Mori N, Tsunewaki K (1990) Restriction fragment length polymorphism (RFLP) analysis in wheat. I. Genomic DNA library construction and RFLP analysis in common wheat. Jpn J Genet 65:367–380

    CAS  PubMed  Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang CP, Cheng S et al (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    CAS  Google Scholar 

  • Liu J, Liu L, Hou N, Zhang A, Liu C (2007) Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica 155:249–258

    CAS  Google Scholar 

  • Lokesh Behl RK, Bhatia P (2008) Characterizing genotypic variability among wheat genotypes varying for salinity tolerance using RAPD markers. The Icfai Univ J Genet Evol 1:48–56

    Google Scholar 

  • Ma ZQ, Lapitan NLV (1998) A comparison of amplified and restriction fragment length polymorphism in wheat. Cereb Res Commun 26:7–13

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797

    CAS  PubMed  Google Scholar 

  • Malik R, Kundu S, Sareen S, Kumar R, Shoran J, Mishra B (2008) KSSR and ISSR markers for assessing DNA polymorphism and genetic diversity among Indian bred wheat varieties. Proc 11th Internat. Wheat Genetics Symp, Sydney University Press, pp 1–4

  • Mandoulakani BA, Tabatabaei BES, Bushehri AAS, Ghannadha MR, Omidi M (2003) Assessment of genetic diversity among wheat cultivars by RAPD-PCR. Iran J Agric Sci 34:447–454

    CAS  Google Scholar 

  • Manifesto MM, Schlatter AS, Hopp HE, Suarez EY, Dubcovky J (2001) Quantitative evaluation of genetic diversity germplasm using molecular markers. Crop Sci 41:682–690

    CAS  Google Scholar 

  • Mantzavinou A, Babal PJ, Kaltsikes PJ (2005) Estimating genetic diversity in Greek durum wheat landraces with RAPD markers. Aust J Agric Res 56:1355–1364

    Google Scholar 

  • Maric S, Bolaric S, Martintic J, Pejic I, Kozumplik V (2004) Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breed 123:366–369

    CAS  Google Scholar 

  • Martos V, Royo C, Rharrabti Y, Garcia LF (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crop Res 91:107–116

    Google Scholar 

  • Medini M, Hamza S, Rebai A, Baum M (2005) Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genet Resour Crop Evol 52:21–31

    CAS  Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    CAS  PubMed  Google Scholar 

  • Migdadi HM, Abdel MT, Masoud S (2004) Genetic diversity in some Aegilops species in Jordan as revealed by RAPDs. Plant Genet Res Newsl 139:47–52

    Google Scholar 

  • Moghaddam ME, Trethowan RM, William HM, Rezai A, Arzani A, Mirlohi AF (2005) Assessment of genetic diversity in bread wheat genotypes for tolerance to drought using AFLPs and agronomic traits. Euphytica 141:147–156

    CAS  Google Scholar 

  • Mohapatra T, Krishanpal Singh SS, Swain SC, Sharma RK, Singh NK (2003) STMS based DNA fingerprints of the new plant type wheat lines. Curr Sci 84:1125–1129

    CAS  Google Scholar 

  • Mori N, Liu YG, Tsunewaki K (1995) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theor Appl Genet 90:129–134

    CAS  PubMed  Google Scholar 

  • Mori N, Moriguchi T, Nakamura C (1997) RFLP analysis of nuclear DNA for study of phylogeny and domestication of tetraploid wheat. Genes Genet Syst 72:153–161

    CAS  Google Scholar 

  • Motawei MI, Al-Doss AA, Moustafa KA (2007) Genetic diversity among selected wheat lines differing in heat tolerance using molecular markers. J Food Agric Environ 5:180–183

    CAS  Google Scholar 

  • Mukhtar MS, Rahman M, Zafar Y (2002) Assessment of diversity among wheat (T. aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA analysis. Euphytica 128:417–425

    Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74

    CAS  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    CAS  PubMed  Google Scholar 

  • Nagaoka T, Ogihara Y (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602

    CAS  Google Scholar 

  • Naghavi MR, Mardi M, Ramshini HA, Fazelinasab B (2004) Comparative analyses of the genetic diversity among bread wheat genotypes based on RAPD and SSR markers. Iran J Biotechnol 2:195–202

    CAS  Google Scholar 

  • Naghavi MR, Mardi M, Pirseyedi SM, Kazemi M, Potki P, Ghaffari MR (2007) Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genet Resour Crop Evol 54:237–240

    Google Scholar 

  • Naghavi MR, Malaki M, Alizadeh H, Pirseiedi M, Mardi M (2009a) An assessment of genetic diversity in wild diploid wheat Triticum boeoticum from west of Iran using RAPD, AFLP and SSR markers. J Agric Sci Technol 11:585–598

    Google Scholar 

  • Naghavi MR, Maleki M, Tabatabaei SF (2009b) Efficiency of floristic and molecular markers to determine diversity in Iranian populations of T. boeoticum. World Acad Sci Eng Technol 49:76–78

    Google Scholar 

  • Najaphy A, Parchin RA, Farshadfar E (2011) Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequences repeat markers. Biotechnol Biotechnol Equip 25:2634–2638

    CAS  Google Scholar 

  • Neel MC, Ellstrand NC (2003) Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum. Conserv Genet 4:337–352

    CAS  Google Scholar 

  • Nybom H (1994) DNA fingerprinting—a useful tool in fruit breeding. Euphytica 77:59–64

    Google Scholar 

  • O’Sullivan H, Batley J, Zhu J, Edwards D, Gale M, Edwards KJ (2002) A high-throughput SNuPE assay for genoty** SNPs in the Xanking regions of wheat microsatellites In: Proceedings of the International Plant, Animal and Microbe Genomes Conference, San Diego, CA, pp 12–16

  • Osmani Z, Siosemardeh A (2009) A study of genetic diversity in Sardari wheat ecotypes using AFLP markers and agronomic traits. J Sci Technol Agric Nat Res 13:301–320

    Google Scholar 

  • Ozbek O, Millet E, Anikster Y, Arslan O, Feldman M (2007) Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis. Theor Appl Genet 115:19–26

    CAS  PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Schäfer-Pregel R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19:1797–1801

    CAS  PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    CAS  PubMed  Google Scholar 

  • Pagnotta MA, Mondini L, Atallah MF (2005) Morphological and molecular characterization of Italian emmer wheat accessions. Euphytica 146:29–37

    Google Scholar 

  • Parker GD, Fox PN, Langridge P, Chalmers K, Whan B, Ganter PF (2002) Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica 124:293–306

    CAS  Google Scholar 

  • Pasqualone A, Lotti C, Bruno A, Vita PD, Fonzo ND, Blanco A (2000) Use of ISSR markers for cultivar identification in durum wheat. CIHEAM-Opti. Mediterraneennes 40:157–161

    Google Scholar 

  • Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–446

    CAS  PubMed  Google Scholar 

  • Pecetti L, Doust MA, Calcagno L (2001) Variation of morphological and agronomical traits and protein composition in durum wheat germplasm from Eastern Europe. Genet Res Crop Evol 48:609–620

    Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G et al (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255

    CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A et al (2008) High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    CAS  PubMed  Google Scholar 

  • Perry DJ (2004) Identification of Canadian durum wheat varieties using a single PCR. Theor Appl Genet 109:55–61

    CAS  PubMed  Google Scholar 

  • Plaschke J, Ganal MW, Roder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    CAS  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Procunier JD, Gray M, Liakat AM, Zhou Y, Prashar S, Fossum M et al (2003) Single nucleotide polymorphisms (SNPs) in hexaploid wheat and high throughput snp detection by invader operation system. Proc Plant Anim Genomics 11th Conf., San-Diego, p 251

  • Pujar S, Tamhankar SA, Rao VS (1999) Arbitrarily primed PCR based diversity assessment reflects hierarchical grou** of Indian tetraploid wheat genotypes. Theor Appl Genet 99:868–876

    CAS  Google Scholar 

  • Pujar S, Tamhankar SA, Gupta VS, Rao VS, Ranjekar PK (2002) Diversity analysis of Indian tetraploid wheat using intersimple sequence repeat markers reveals their superiority over random amplified polymorphic DNA markers. Biochem Genet 40:1–2

    Google Scholar 

  • Qiu YX, Li JH, Liu HL, Chen YY, Fu CX (2006) Population structure and genetic diversity of Dysosma versipellis (Berberidaceae), a rare endemic from China. Biochem Syst Ecol 34:745–752

    CAS  Google Scholar 

  • Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, Tingey SV (1996) Generating and using DNA markers in plants. In: Birren B, Lai E (eds) Nonmammalian genomic analysis. A practical guide. Academic Press, San Diego, pp 75–134

    Google Scholar 

  • Rahman M, Hussain D, Zafar Y (2002) Estimation of genetic divergence among elite cotton cultivars genotypes by DNA fingerprinting technology. Crop Sci 42:2137–2144

    CAS  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Perotta C (2006) Drought stress response in wheat, physiological and Molecular analysis of resistance and sensitive genotypes. Plant Cell Environ 29:2143–2152

    CAS  PubMed  Google Scholar 

  • Ramshini H, Naghavi MR, Alizadeh H (2005) Comparison of genetic diversity based on total and sharp bands of RAPD data in wheat. Asian J Plant Sci 4:123–127

    Google Scholar 

  • Rashed MA, Abou-Deif MH, Sallam MAA, Ramadan WAA (2008) Estimation of genetic diversity among thirty bread wheat varieties by RAPD analysis. J Appl Sci Res 4:1898–1905

    CAS  Google Scholar 

  • Rashed MA, Sabry SBS, Atta AH, Mostafa AM (2010) Development of RAPD markers associated drought tolerance in bread wheat (Triticum aestivum L.). Egypt J Genet Cytol 39:131–142

    Google Scholar 

  • Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D et al. (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139

    CAS  PubMed  Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17

    Google Scholar 

  • Rehman R, Shah KN, Masood MS, Arshad M, Ghafoor A (2013) Genetic divergence among Pakistani bread wheat varieties and advanced line for randomly amplified polymorphic DNA (RAPD) markers. Pak J Bot 45:327–332

    Google Scholar 

  • Ren J, Sun D, Chen L, You FM, Wang J, Peng Y et al (2013) Genetic diversity revealed by single polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Sci 14:7061–7088

    CAS  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD et al (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Genet 246:327–333

    CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L et al (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    PubMed  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    CAS  PubMed  Google Scholar 

  • Roy JK, Balyan HS, Prasad M, Gupta PK (2002) Use of SAMPL for a study of polymorphism, genetic diversity and possible gene tagging in bread wheat. Theor Appl Genet 104:465–472

    CAS  PubMed  Google Scholar 

  • Roy JK, Lakshmikumaran MS, Balyan HS, Gupta PK (2004) AFLP-Based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochem Genet 42:43–59

    CAS  PubMed  Google Scholar 

  • Rus AM, Rios S, Olmos E, Santa-Cruz A, Bolarin MC (2000) Longterm culture modifies the salt responses of callus lines of salt-tolerant and salt-sensitive tomato species. J Plant Physiol 157:413–420

    CAS  Google Scholar 

  • Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W et al (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722

    CAS  Google Scholar 

  • Sadat S, Saeid KA, Bihamta MR (2013) Marker assisted selection for heat tolerance in bread wheat. World Appl Sci J 21:1181–1189

    CAS  Google Scholar 

  • Sajida B, Mohamummad UD, Ghulam SN, Imtiazahmed K, Abdallah K, Mazher HN et al (2010) Molecular markers assisted selection for drought tolerance wheat genotypes. Pak J Bot 42:2443–2445

    Google Scholar 

  • Salamini F, Heun M, Schäfer-Pregel R, Klawan D, Castagna R, Accerbi M et al (1997) Site of einkorn domestication identified by DNA fingerprinting. Science 278:1312–1314

    Google Scholar 

  • Saleh B (2012) Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques. J Plant Biol Res 1:1–11

    CAS  Google Scholar 

  • Salem KFM, El-Zanaty AM, Esmail RM (2008) Assessing Wheat (Triticum aestivum L.) Genetic diversity using morphological characters and microsatallite markers. World J Agric Sci 4:538–544

    Google Scholar 

  • Sardouie-Nasab S, Mohammadi-Nejad GH, Nakhoda B (2013) Assessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance. J Plant Mol Breed 2:28–39

    Google Scholar 

  • Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops sitopsis species. Theor Appl Genet 92:928–934

    CAS  PubMed  Google Scholar 

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2002) Genetic diversity of wheat wild relatives in the Near East detected by AFLP. Euphytica 127:81–93

    CAS  Google Scholar 

  • Sawalha K, Eideh H, Laham S, Hasasneh H, Mezeid B (2008) Genetic diversity studies on wheat landraces in Palestine using RAPD markers in comparison to phenotypic classification. J Appl Biol Sci 2:29–34

    CAS  Google Scholar 

  • Schuster I, Vieira ESN, da Silva GJ, de Franco FA, Marchioro VS (2009) Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers. Genet Mol Biol 32:557–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sehgal SA, Tahir RA, Nawaz M, Younas M (2012) Genic microsatellite markers for genetic diversity of rust resistant wheat genotypes. J Biochem Technol 4:480–484

    CAS  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    CAS  PubMed  Google Scholar 

  • Shah MM, Yen Y, Gill KS, Baenziger PS (2000) Comparisons of RFLP and PCR-based markers to detect polymorphism between wheat cultivars. Euphytica 114:135–142

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Shoaib A, Arabi MIE (2006) Genetic diversity among Syrian cultivated and landraces wheat revealed by AFLP markers. Genet Resour Crop Evol 53:901–906

    CAS  Google Scholar 

  • Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88:994–1003

    CAS  PubMed  Google Scholar 

  • Sofalian O, Chaparzadeh N, Javanmard A, Hejazi MS (2008) Study the Genetic Diversity of wheat landraces from Northwest of Iran based on ISSR molecular markers. Int J Agric Biol 10:466–468

    CAS  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.). Theor Appl Genet 104:350–357

    CAS  PubMed  Google Scholar 

  • Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437

    Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    CAS  Google Scholar 

  • Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248

    Google Scholar 

  • Stepien L, Mohler V, Bocianowski J, Koczyk G (2007) Assessing genetic diversity of Polish wheat (Triticum aestivum) varieties using microsatellite markers. Genet Resour Crop Evol 54:1499–1506

    CAS  Google Scholar 

  • Stodart BJ, Mackay M, Raman H (2005) AFLP and SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em. Thell.) from different geographic regions. Aust J Agric Res 56:691–697

    CAS  Google Scholar 

  • Sun Q, Ni Z, Liu Z, Gao J, Huang T (1998) Genetic relationships and diversity among Tibetan wheat, common wheat and European spelt wheat revealed by RAPD markers. Euphytica 99:205–211

    CAS  Google Scholar 

  • Sun G, Bond M, Nass H (2003) RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance. Theor Appl Genet 106:1059–1067

    CAS  PubMed  Google Scholar 

  • Tahir NA (2008) Assessment of genetic diversity among wheat varieties in sulaimanyah using random amplified polymorphic DNA. Jord J Biol Sci 1:159–164

    Google Scholar 

  • Talebi R, Fayyaz F (2012) Quantitative evaluation of genetic diversity in Iranian modern cultivars of wheat (Triticum aestivum L.) using morphological and Amplified Fragment Length Polymorphism (AFLP) markers. Biharean Biol 6:14–18

    Google Scholar 

  • Talebi R, Fayaz F, Karami E (2012) Morphometric and amplified fragment length polymorphism marker analysis in some landrace wheat (Triticum aestivum) genotypes collected from north-west Iran. Environ Exp Biol 10:49–56

    Google Scholar 

  • Tanyolac B, Linton E, Özkan H (2003) Low genetic diversity in wild emmer (T. turgidum L. subsp. dicoccoides (Körn. ex Asch. et Graebn.) Thell.) from South-eastern Turkey revealed by restriction fragment length polymorphism. Genet Resour Crop Evol 50:829–833

    CAS  Google Scholar 

  • Teklu Y, Hammer K, Huang XQ, Röder MS (2006) Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1115–1126

    CAS  Google Scholar 

  • Teshale ET, Bansal S, Mishra A, Vijaipal, Khanna VK (2003) DNA fingerprinting of Wheat genotypes by RAPD Markers. Wheat Info Ser 96:23–27

    Google Scholar 

  • Thomas G, Mohapatra T, Rao AR, Sharma RP (2006) Distinguishing Indian commercial wheat varieties using RAPD based DNA fingerprints. Ind J Biotechnol 5:200–206

    CAS  Google Scholar 

  • Thompson JA, Nelson RL, Vodkin LO (1998) Identification of diverse soybean germplasm using RAPD markers. Crop Sci 38:1348–1355

    Google Scholar 

  • Tian QZ, Zhou RH, Jia JZ (2005) Genetic diversity trend of common wheat (Triticum aestivum L.) in China revealed with AFLP markers. Genet Resour Crop Evol 52:325–331

    CAS  Google Scholar 

  • Uz E, Yildrim F, Hakki EE, Akkaya MS (2009) Genetic relationship of wild and Einkorn based on geographical distribution in Anatolia and Thrace using AFLP markers. J Appl Biol Sci 3:20–25

    Google Scholar 

  • Vieira EA, de Carvalho FIF, Bertan I, Kopp MM, Zimmer PD, Benin G et al (2007) Association between genetic distances in wheat (Triticum aestivum L.as estimated by AFLP and morphological markers. Genet Mol Biol 30:392–399

    CAS  Google Scholar 

  • Vierling RA, Nguyen HT (1992) Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theor Appl Genet 84:835–838

    CAS  PubMed  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson TM, Newbury HJ (1995) Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74:170–179

    CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van D, Lee T et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang H, Wang X, Chen P, Liu D (2007) Assessment of genetic diversity of yunnan, Tibetan, and **njiang wheat using SSR markers. J Genet Genomics 34:623–633

    CAS  PubMed  Google Scholar 

  • Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y et al (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937

    CAS  PubMed  Google Scholar 

  • Warburton ML, Skovmand B, Mujeeb-Kazi A (2002) The molecular genetic characterization of the ‘Bobwhite’ bread wheat family using AFLPs and the effect of the T1BL.1RS translocation. Theor Appl Genet 104:868–873

    CAS  PubMed  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    PubMed Central  PubMed  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JS, Kilian A et al (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    CAS  PubMed  Google Scholar 

  • Wilde F, Schon C, Korzun V, Ebmeyer E, Schmolke M, Hartl L et al (2008) Marker-based introduction of three quantitative-trait loci conferring resistance to fusarium head blight into an independent elite winter wheat breeding population. Theor Appl Genet 117:29–35

    CAS  PubMed  Google Scholar 

  • William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s Experience. Euphytica 157:307–319

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Resour 18:6531–6535

    CAS  Google Scholar 

  • Würschum T, Langer SM, Longin CF, Korzun V, Akhunov E, Ebmeyer E et al (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 198:925–937

    Google Scholar 

  • Yildirim F, Akkaya MS (2006) DNA fingerprinting and genetic characterization of Anatolian Triticum spp.using AFLP markers. Genet Resour Crop Evol 53:1033–1042

    CAS  Google Scholar 

  • Yildirim A, Sonmezoglu OA, Gökmen S, Kandemir N, Aydin N (2011) Determination of genetic diversity among Turkish durum wheat landraces by microsatellites. Afr J Biotechnol 10:3915–3920

    CAS  Google Scholar 

  • Yim WC, Kang MS, Kwon YU, Jang CS, Seo YW, Lim SD et al (2007) Evaluation of genetic diversity among Korean wheat using RAPD and ISSR Analysis. Kor J Breed Sci 39:309–315

    Google Scholar 

  • You GX, Zhang XY, Wang LF (2004) An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: information from 96 random accessions with maximized genetic diversity. Mol Breed 14:397–406

    Google Scholar 

  • Yue** W, Lin H (2000) Genetic diversity of salt tolerant germplasm in wheat by RAPD. Plant and Animal Genome VIII Conference

  • Zhang P, Dreisigacker S, Melchinger AE, Reif JC, Kazi AM, Ginkel MV et al (2005) Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed 15:1–10

    Google Scholar 

  • Zhang P, Dreisigacker S, Buerkert A, Alkhanjari S, Melchinger AE, Warburton ML (2006) Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genet Resour Crop Evol 53:1351–1360

    Google Scholar 

  • Zhang L, Liu D, Guo X, Yang W, Sun J, Wang D et al (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Chen Y, Wei Y, Zhou Y, Zhang Z, Liu Y et al (2001) Esterase, gliadins and RAPD variations among Sichuan wheat cultivars. Wheat Info Ser 92:5–8

    Google Scholar 

  • Zhuang P, Ren Q, Li W, Chen G (2011) Genetic diversity of Persian wheat (Triticum turgidum ssp. carthlicum) accessions by EST-SSR markers. Am J Biochem Mol Biol 1:223–230

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

There may be some researchers whose vital contributions could not be involved in this manuscript, we greatly apologize for this and are highly thankful for their significant work. First author has availed TUBITAK Fellowship during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdogan E. Hakki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.K., Pandey, A., Choudhary, S. et al. From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis. Genet Resour Crop Evol 61, 1001–1032 (2014). https://doi.org/10.1007/s10722-014-0114-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0114-5

Keywords

Navigation