Log in

Overexpression of HexCer and LacCer containing 2-hydroxylated fatty acids in cholangiocarcinoma and the association of the increase of LacCer (d18:1-h23:0) with shorter survival of the patients

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Alteration of glycosphingolipid (GSL) synthesis is observed in many types of cancer. In this study, we have analyzed the expression of sphingolipids and GSLs in cholangiocarcinoma (CCA) tissues and adjacent normal liver tissues. Neutral lipids were extracted from tissue samples using mild-alkaline treatment method followed by TLC and LC-MS analysis. The expression of ceramides, hexosylceramides (HexCer), and lactosylceramides (LacCer) was altered in CCA tissues, 61.1% (11/18) of them showing an increase whereas 38.9% (7/18) showing a decrease, compared with the adjacent normal tissue. Cers and GSLs containing 2-hydroxylated fatty acids except one LacCer molecular species were overexpressed in CCA tissues, and the increase of LacCer (d18:1-h23:0) was correlated with shorter survival of CCA patients, suggesting the involvement of GSL synthesis and fatty acid hydroxylation in progression of CCA. Taken together, we have demonstrated in this study the increase of GSL synthesis and fatty hydroxylation in CCA, which probably be used as a target for CCA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Diaz-Rohrer, B.B., Levental, K.R., Simons, K., Levental, I.: Membrane raft association is a determinant of plasma membrane localization. Proc. Natl. Acad. Sci. U. S. A. 111, 8500–8505 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prinetti, A., Loberto, N., Chigorno, V., Sonnino, S.: Glycosphingolipid behaviour in complex membranes. Biochim. Biophys. Acta. 1788, 184–193 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Chiricozzi, E., Ciampa, M.G., Brasile, G., Compostella, F., Prinetti, A., Nakayama, H., Ekyalongo, R.C., Iwabuchi, K., Sonnino, S., Mauri, L.: Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J. Lipid Res. 56, 129–141 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iwabuchi, K., Prinetti, A., Sonnino, S., Mauri, L., Kobayashi, T., Ishii, K., Kaga, N., Murayama, K., Kurihara, H., Nakayama, H., Yoshizaki, F., Takamori, K., Ogawa, H., Nagaoka, I.: Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj. J. 25, 357–374 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Ohno, Y., Suto, S., Yamanaka, M., Mizutani, Y., Mitsutake, S., Igarashi, Y., Sassa, T., Kihara, A.: ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc. Natl. Acad. Sci. U. S. A. 107, 18439–18444 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Coskun, U., Grzybek, M., Drechsel, D., Simons, K.: Regulation of human EGF receptor by lipids. Proc. Natl. Acad. Sci. U. S. A. 108, 9044–9048 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miljan, E.A., Meuillet, E.J., Mania-Farnell, B., George, D., Yamamoto, H., Simon, H.G., Bremer, E.G.: Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J. Biol. Chem. 277, 10108–10113 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y., Inokuchi, J.: Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 104, 13678–13683 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Inokuchi, J., Nagafuku, M., Ohno, I., Suzuki, A.: Distinct selectivity of gangliosides required for CD4(+) T and CD8(+) T cell activation. Biochim. Biophys. Acta. 1851, 98–106 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Ito, E., Tominaga, A., Waki, H., Miseki, K., Tomioka, A., Nakajima, K., Kakehi, K., Suzuki, M., Taniguchi, N., Suzuki, A.: Structural characterization of monosialo-, disialo- and trisialo-gangliosides by negative ion AP-MALDI-QIT-TOF mass spectrometry with MS(n) switching. Neurochem. Res. 37, 1315–1324 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Ito, E., Waki, H., Miseki, K., Shimada, T., Sato, T.A., Kakehi, K., Suzuki, M., Suzuki, A.: Structural characterization of neutral glycosphingolipids using high-performance liquid chromatography-electrospray ionization mass spectrometry with a repeated high-speed polarity and MSn switching system. Glycoconj. J. 30, 881–888 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Nagafuku, M., Okuyama, K., Onimaru, Y., Suzuki, A., Odagiri, Y., Yamashita, T., Iwasaki, K., Fujiwara, M., Takayanagi, M., Ohno, I., Inokuchi, J.: CD4 and CD8 T cells require different membrane gangliosides for activation. Proc. Natl. Acad. Sci. U. S. A. 109, E336–E342 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oikawa, N., Hatsuta, H., Murayama, S., Suzuki, A., Yanagisawa, K.: Influence of APOE genotype and the presence of Alzheimer's pathology on synaptic membrane lipids of human brains. J. Neurosci. Res. 92, 641–650 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Oikawa, N., Matsubara, T., Fukuda, R., Yasumori, H., Hatsuta, H., Murayama, S., Sato, T., Suzuki, A., Yanagisawa, K.: Imbalance in fatty-acid-chain length of gangliosides triggers Alzheimer amyloid deposition in the precuneus. PLoS One. 10, e0121356 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Veillon, L., Go, S., Matsuyama, W., Suzuki, A., Nagasaki, M., Yatomi, Y., Inokuchi, J.: Identification of ganglioside GM3 molecular species in human serum associated with risk factors of metabolic syndrome. PLoS One. 10, e0129645 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hakomori, S.: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50, 733–764 (1981)

    Article  CAS  PubMed  Google Scholar 

  17. Hakomori, S.I., Handa, K.: GM3 and cancer. Glycoconj. J. 32, 1–8 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. Hakomori, S.I., Murakami, W.T.: Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc. Natl. Acad. Sci. U. S. A. 59, 254–261 (1968)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka, K., Tamiya-Koizumi, K., Yamada, M., Murate, T., Kannagi, R., Kyogashima, M.: Hypoxia remodels the composition of the constituent ceramide species of HexCer and Hex2Cer with phytosphingosine and hydroxy fatty acids in human colon cancer LS174T cells. Glycoconj. J. 32, 615–623 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka, K., Tamiya-Koizumi, K., Yamada, M., Murate, T., Kannagi, R., Kyogashima, M.: Individual profiles of free ceramide species and the constituent ceramide species of sphingomyelin and neutral glycosphingolipid and their alteration according to the sequential changes of environmental oxygen content in human colorectal cancer Caco-2 cells. Glycoconj. J. 31, 209–219 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Folch, J., Lees, M., Sloane Stanley, G.H.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    CAS  Google Scholar 

  22. Yoneshige, A., Sasaki, A., Miyazaki, M., Kojima, N., Suzuki, A., Matsuda, J.: Developmental changes in glycolipids and synchronized expression of nutrient transporters in the mouse small intestine. J. Nutr. Biochem. 21, 214–226 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki, A., Suzuki, M., Ito, E., Nitta, T., Inokuchi, J.I.: Mass spectrometry of gangliosides. Methods Mol. Biol. 1804, 207–221 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. Schiffmann, S., Sandner, J., Birod, K., Wobst, I., Angioni, C., Ruckhaberle, E., Kaufmann, M., Ackermann, H., Lotsch, J., Schmidt, H., Geisslinger, G., Grosch, S.: Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis. 30, 745–752 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, M., Cao, K., Kato, S., Komizu, Y., Mizutani, N., Tanaka, K., Arima, C., Tai, M.C., Yanagisawa, K., Togawa, N., Shiraishi, T., Usami, N., Taniguchi, T., Fukui, T., Yokoi, K., Wakahara, K., Hasegawa, Y., Mizutani, Y., Igarashi, Y., Inokuchi, J., Iwaki, S., Fujii, S., Satou, A., Matsumoto, Y., Ueoka, R., Tamiya-Koizumi, K., Murate, T., Nakamura, M., Kyogashima, M., Takahashi, T.: Targeting ceramide synthase 6-dependent metastasis-prone phenotype in lung cancer cells. J. Clin. Invest. 126, 254–265 (2016)

    Article  PubMed  Google Scholar 

  26. Wegner, M., Neddermann, D., Piorunska-Stolzmann, M., Jagodzinski, P.P.: Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res. Clin. Pract. 105, 164–175 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Patt, L.M., Grimes, W.J.: Cell surface glycolipid and glycoprotein glycosyltransferases of normal and transformed cells. J. Biol. Chem. 249, 4157–4165 (1974)

    CAS  PubMed  Google Scholar 

  28. Chen, J., Li, X., Ma, D., Liu, T., Tian, P., Wu, C.: Ceramide synthase-4 orchestrates the cell proliferation and tumor growth of liver cancer in vitro and in vivo through the nuclear factor-kappaB signaling pathway. Oncol. Lett. 14, 1477–1483 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alderson, N.L., Hama, H.: Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in D6P2T schwannoma cells. J. Lipid Res. 50, 1203–1208 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, S., Beeghly-Fadiel, A., Cai, Q., Cai, H., Guo, X., Shi, L., Wu, J., Ye, F., Qiu, Q., Zheng, Y., Zheng, W., Bao, P.P., Shu, X.O.: Gene expression in triple-negative breast cancer in relation to survival. Breast Cancer Res. Treat. 171, 199–207 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. Nagano, M., Takahara, K., Fujimoto, M., Tsutsumi, N., Uchimiya, H., Kawai-Yamada, M.: Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. Plant Physiol. 159, 1138–1148 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Armartmuntree, N., Murata, M., Techasen, A., Yongvanit, P., Loilome, W., Namwat, N., Pairojkul, C., Sakonsinsiri, C., Pinlaor, S., Thanan, R.: Prolonged oxidative stress down-regulates early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis. Redox Biol. 14, 637–644 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Thanan, R., Techasen, A., Hou, B., Jamnongkan, W., Armartmuntree, N., Yongvanit, P., Murata, M.: Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: a novel model of oxidative stress-related cholangiocarcinoma genesis. Biochem. Biophys. Res. Commun. 464, 182–188 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Alderson, N.L., Rembiesa, B.M., Walla, M.D., Bielawska, A., Bielawski, J., Hama, H.: The human FA2H gene encodes a fatty acid 2-hydroxylase. J. Biol. Chem. 279, 48562–48568 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. Zoller, I., Meixner, M., Hartmann, D., Bussow, H., Meyer, R., Gieselmann, V., Eckhardt, M.: Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J. Neurosci. 28, 9741–9754 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hama, H.: Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta. 1801, 405–414 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. Jenkins, B., West, J.A., Koulman, A.: A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (c15:0) and heptadecanoic acid (c17:0) in health and disease. Molecules. 20, 2425–2444 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki, A., Handa, S., Yamakawa, T.: Separation of molecular species of glucosylceramide by high performance liquid chromatography of their benzoyl derivatives. J. Biochem. 80, 1181–1183 (1976)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the grant supports from Faculty of Medicine (RG60201) and Khon Kaen University (61003501). Thanks Prof. Yukifumi Nawa for the English editing via KKU Publication Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sopit Wongkham.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 801 kb)

ESM 2

(PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silsirivanit, A., Phoomak, C., Teeravirote, K. et al. Overexpression of HexCer and LacCer containing 2-hydroxylated fatty acids in cholangiocarcinoma and the association of the increase of LacCer (d18:1-h23:0) with shorter survival of the patients. Glycoconj J 36, 103–111 (2019). https://doi.org/10.1007/s10719-019-09864-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09864-4

Keywords

Navigation