Log in

Approximation of conformal map**s by circle patterns

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A circle pattern is a configuration of circles in the plane whose combinatorics is given by a planar graph G such that to each vertex of G corresponds a circle. If two vertices are connected by an edge in G, the corresponding circles intersect with an intersection angle in (0, π). Two sequences of circle patterns are employed to approximate a given conformal map g and its first derivative. For the domain of g we use embedded circle patterns where all circles have the same radius decreasing to 0 and with uniformly bounded intersection angles. The image circle pattern has the same combinatorics and intersection angles and is determined from boundary conditions (radii or angles) according to the values of g′ (|g′| or arg g′). For quasicrystallic circle patterns the convergence result is strengthened to C -convergence on compact subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobenko A.I., Mercat C., Suris Y.B. (2005) Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function. J. Reine angew. Math. 583: 117–161

    MATH  MathSciNet  Google Scholar 

  2. Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds.): Discrete differential geometry. In: Oberwolfach Seminars, vol. 38. Birkhäuser, Basel (2008)

  3. Bobenko A.I., Springborn B.A. (2004) Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356: 659–689

    Article  MATH  MathSciNet  Google Scholar 

  4. Bobenko, A.I., Suris, Y.B.: Discrete differential geometry. The integrable structure (to appear in 2008)

  5. Bücking, U.: Approximation of conformal map**s by circle patterns and discrete minimal surfaces. Ph.D. thesis, Technische Universität Berlin (2007). Published online at http://opus.kobv.de/tuberlin/volltexte/2008/1764/

  6. Carter I., Rodin B. (1992) An inverse problem for circle packing and conformal map**. Trans. Am. Math. Soc. 334: 861–875

    Article  MATH  MathSciNet  Google Scholar 

  7. Duffin R.J. (1953) Discrete potential theory. Duke Math. J. 20: 233–251

    Article  MATH  MathSciNet  Google Scholar 

  8. Duffin R.J. (1968) Potential theory on a rhombic lattice. J. Comb. Theory 5: 258–272

    Article  MATH  MathSciNet  Google Scholar 

  9. Duneau M., Katz A. (1985) Quasiperiodic patterns. Phys. Rev. Lett. 54: 2688–2691

    Article  MathSciNet  Google Scholar 

  10. Gähler F., Rhyner J. (1986) Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings. J. Phys. A 19: 267–277

    Article  MATH  MathSciNet  Google Scholar 

  11. He Z.-X. (1999) Rigidity of infinite disk patterns. Ann. Math. 149: 1–33

    Article  MATH  Google Scholar 

  12. He Z.-X., Schramm O. (1996) On the convergence of circle packings to the Riemann map. Invent. Math. 125: 285–305

    Article  MATH  MathSciNet  Google Scholar 

  13. He Z.-X., Schramm O. (1998) The C -convergence of hexagonal disk packings to the Riemann map. Acta Math. 180: 219–245

    Article  MATH  MathSciNet  Google Scholar 

  14. Kenyon R. (2002) The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150: 409–439

    Article  MATH  MathSciNet  Google Scholar 

  15. Lan S.Y., Dai D.Q. (2007) The C -convergence of SG circle patterns to the Riemann map**. J. Math. Anal. Appl. 332: 1351–1364

    Article  MATH  MathSciNet  Google Scholar 

  16. Matthes D. (2005) Convergence in discrete Cauchy problems and applications to circle patterns. Conform. Geom. Dyn. 9: 1–23

    Article  MATH  MathSciNet  Google Scholar 

  17. Mercat C. (2001) Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218: 177–216

    Article  MATH  MathSciNet  Google Scholar 

  18. Rodin B., Sullivan D. (1987) The convergence of circle packings to the Riemann map**. J. Diff. Geom. 26: 349–360

    MATH  MathSciNet  Google Scholar 

  19. Saloff-Coste L. (1997) Some inequalities for superharmonic functions on graphs. Potential Anal. 6: 163–181

    Article  MATH  MathSciNet  Google Scholar 

  20. Schramm O. (1997) Circle patterns with the combinatorics of the square grid. Duke Math. J. 86: 347–389

    Article  MATH  MathSciNet  Google Scholar 

  21. Senechal, M.: Quasicrystals and Geometry. Cambridge University Press (1995)

  22. Springborn, B.A.: Variational principles for circle patterns. Ph.D. thesis, Technische Universität Berlin (2003). Published online at http://opus.kobv.de/tuberlin/volltexte/2003/668/

  23. Stephenson K. (2005) Introduction to circle packing: the theory of discrete analytic functions. Cambridge University Press, New York

    MATH  Google Scholar 

  24. Thurston, B.: The finite Riemann map** theorem (1985). Invited address at the International Symposioum in Celebration of the proof of the Bieberbach Conjecture, Purdue University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Bücking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bücking, U. Approximation of conformal map**s by circle patterns. Geom Dedicata 137, 163–197 (2008). https://doi.org/10.1007/s10711-008-9292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9292-7

Keywords

Mathematics Subject Classification (2000)

Navigation