Log in

Genomic-based-breeding tools for tropical maize improvement

  • Review
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the develo** worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genoty** technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association map** and backcross nested association map** could certainly address the genetic issues in maize improvement programs in develo** countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenoty** is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Ajmore-Marsan P, Gorni C, Chitto` A, Redaelli R, Van Vijk R, Stam P, Motto M (2001) Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers and cofator analysis. Theor Appl Genet 102:230–243

    Article  Google Scholar 

  • Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J, Wells DM (2015) Phenoty** pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66:2283–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmach G, Gedil M, Menkir A, Spillane C (2013) Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol 13:227–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Nair SK, Vinayan MT, Zaidi PH, Vivek BS, Prasanna BM (2014) In: Paroda R et al (eds) Proceedings of 12th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security. Bangkok, Thailand, pp 81–84

  • Battistelli GM, Von Pinho RG, Justus A, Couto EGO, Balestre M (2013) Production and identification of doubled haploids in tropical maize. Genet Mol Res 12:4230–4242

    Article  CAS  PubMed  Google Scholar 

  • Benchimol LL, de Souza CL, de Souza AP (2005) Microsatellite-assisted backcross selection in maize. Genet Mol Biol 28:789–797

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3):1082–1090

    Article  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid- density genome-wide association genetics and diversity patterns reveal key genomic regions with a major contribution of the Vgt2 (ZCN8) locus. PLoS One 8:e71377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckler ES, Stevens NM (2005) Maize origins, domestication, and selection. In: Motley TJ, Zerega N, Cross H (eds) Darwin’s harvest. Columbia University Press, New York, pp 67–90

    Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint- Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement MJ, Udall JA, Wilcox ER, Crandall KA (2011) Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol 3:1312–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns JE, Sonder K, Zaidi PH, Verhulst N, Mahuku G, Babu R, Nair SK, Das B, Govaerts B, Vinayan MT, Rashid Z, Noor JJ, Devi P, Vicente FS, Prasanna BM (2012) Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron 114:1–58

    Article  CAS  Google Scholar 

  • Chaikam V, Nair SK, Babu R, Martinez L, Tejomurtula J, Boddupalli PM (2015) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet 128:159–171

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shrestha R, Ding J, Zheng H, Mu C, Wu J, Mahuku G (2016) Genome-wide association study and QTL map** reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3 Genes Genom Genet 6(12):3803–3815

    Google Scholar 

  • Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai JS, Li M, Liu X, Lu YL, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhajarvi T, Rong TZ, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang ZW, Kaeppler SM, Ross- Ibarra J, McMullen MD, Buckler ES, Zhang GY, Xu YB, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    Article  CAS  PubMed  Google Scholar 

  • Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint- Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association map** and inbred association panels. Plant Physiol 158:824–834

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Gho C, Leafgren R, Tang T, Messina C (2014) Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot 65:6191–6204

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan JB, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Beyene Y, Kassa S, Perez P, Hickey JM, Chen C, de los Campos G, Burgueno J, Windhausen VS, Buckler E, Jannink JL, Cruz MAL, Babu R (2013) Genomic prediction in maize breeding populations with genoty**-by-sequencing. G3 Genes Genom Genet 3:1903–1926

    Google Scholar 

  • Dao A, Sanou J, Mitchell SE, Gracen V, Danquah EY (2014) Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines. BMC Genet 15:127–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Xu X, Miao J, Li L, Zhang D, Mi X, Liu C, Tian X, Melchinger AE, Chen S (2013) Fine map** of qhir1 influencing in vivo haploid induction in maize. Theor Appl Genet 126:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genoty** and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine map** and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvick DN (1977) Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica 22:187–196

    Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Plant breeding reviews part 2. Wiley, New York, pp 109–151

    Google Scholar 

  • Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33:812–829

    Article  PubMed  Google Scholar 

  • Edmeades GO, Bolanos J, Chapman SC, Lafitte HR, Banziger M (1999) Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci 39:1306–1315

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genoty**-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraley RT (2009) Molecular genetic approaches to maize improvement—an introduction. In: Krizetal (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, pp 3–6

    Chapter  Google Scholar 

  • Frova C, Krajewski P, di Fonzo N, Villa M, Sari-Gorla M (1999) Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor Appl Genet 99:280–288

    Article  Google Scholar 

  • Gaffney J, Schussler J, Löffler C, Cai W, Paszkiewicz S, Messina C, Cooper M (2015) Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt. Crop Sci 55:1608–1618

    Article  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Schipprack W, Flament P, Melchinger AE, Menz M, Moreno- Gonzalez J, Ouzunova M, Charcosset A, Schon CC, Moreau L (2014) Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics 198:1717–1734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonza´lez-Camacho JM, de los Campos G, Pe´rez P, Gianola D, Cairns JE, Mahuku G, Babu R, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125:759–771

    Article  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Gorjanc G, Jenko J, Hearne SJ, Hickey JM (2016) Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genom 17(1):30

    Article  CAS  Google Scholar 

  • Guo M, Cooper M (2015) Future maize hybrid development: breeding with assistance of molecular and genomics technologies and transgenics. In: Wusirika R, Bohn M, Lai J, Kole C (eds) Genetics, genomics and breeding of maize. CRC Press, Boca Raton, pp 89–119

    Google Scholar 

  • Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci India 96:230–237

    Google Scholar 

  • Gupta PK, Kulwal PL, Jaiswal V (2014) Association map** in crop plants: opportunities and challenges. In: Friedmann T et al (eds) Advances in genetics 85. Academic Press, Cambridge, pp 109–148

    Google Scholar 

  • Hainey C, Rafalski JA, Hanafey M, Zhang Y, Krespan W, Tingey S (2015) Genomic distribution of genetic diversity in elite maize germplasm. In: Ramakrishna et al (eds) Genetics, genomics and breeding of maize. CRC, New Yark, pp 51–63

    Google Scholar 

  • Halilu AD, Ado SG, Usman IS, Appiah-Kubi D (2013) Prospects of endosperm DNA in maize seed characterization. Maydica 58:288–290

    Google Scholar 

  • Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53:876–883

    Article  CAS  PubMed  Google Scholar 

  • Hillel D, Rosenzweig C (2005) The role of biodiversity in agronomy. Adv Agron 88:1–34

    Article  Google Scholar 

  • Ho J, McCouch S, Smith M (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Schrag TA, Peis R, Unterseer S, Schipprack W, Chen S, Lai J, Yan J, Prasanna BM, Chaikam V (2016) The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics 202(4):1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IFAD (2002) Assesment of Rural Poverty: Asia and the Pacific Asia and the Pacific Division, project management Department. International Fund for Agriculture Development. http://www.ifad.org/poverty/region/pi/PI_part1.pdf

  • IPCC (2007) Climate change (2007) In: Solomon et al (eds) Assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Kashiani P, Saleh G, Panandam JM, Abdullah NAP, Selamat A (2012) Molecular characterization of tropical sweet corn inbred lines using microsatellite markers. Maydica 57:154–163

    Google Scholar 

  • Kassa S, Beyene Y, Babu R, Nair S, Gowda M, Das B, Tarekegne A, Mugo NS, Mahuku G, Worku M, Warburton LM, Olseu SM, Prasanna BM (2015) QTL map** and molecular breeding for develo** stress resilient maize for sub-Saharan Africa. Crop Sci 5:1–11

    Google Scholar 

  • Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414

    Article  PubMed  PubMed Central  Google Scholar 

  • Khakwani K, Dogar MR, Ahsan M, Hussain A, Asif M, Malhi AR, Altaf M (2015) Development of maize haploid inducer lines and doubled haploid lines in Pakistan. Br Biotechnol J 8:1–7

    Article  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Marsan PA, Gorni C, Chitto A, Redaelli R, van Vijk R, Stam P, Motto M (2001) Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet 102:230–243

    Article  CAS  Google Scholar 

  • Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013) Genomewide predictions from maize single-cross data. Theor Appl Genet 126:13–22

    Article  PubMed  Google Scholar 

  • Masuka B, Atlin GN, Olsen M, Magorokosho C, Labuschagne M, Crossa J, Vivek BS, Macrobert J (2017) Gains in maize genetic improvement in eastern and southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci 57:168–179

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller E, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association map** population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Mendes MP, de Souza CL (2016) Genomewide prediction of tropical maize single-crosses. Euphytica 209(3):651–663

    Article  CAS  Google Scholar 

  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62:855–868

    Article  CAS  PubMed  Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair SK, Babu R, Magorokosho C, Mahuku G, Semagn K, Beyene Y, Das B, Mukambi D, Kumar PL, Boddupalli PM (2015) Fine map** of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Theor Appl Genet 128:1839–1854

    Article  CAS  PubMed  Google Scholar 

  • Nepolean T, Hossain F, Shiriga K, Mittal S, Arora K, Rathore A, Mohan S, Shah T, Sharma R, Namratha PM, Mithra ASV, Mohaptara T, Gupta HS (2013) Unravelling the genetic architecture of subtropical maize (Zea mays L.) lines and their utility in breeding programs. BMC Genom 14:877–890

    Article  CAS  Google Scholar 

  • Osman KA, Tang B, Wang YP, Chen JH, Yu F, Li L, Han XS, Zhang ZX, Yan JB, Zheng YL, Yue B, Qiu FZ (2013) Dynamic QTL analysis and candidate gene map** for waterlogging tolerance at maize seedling stage. PLoS One 8:e79305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cephala J, Buell CR, Buckler ES (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198(4):1699–1716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M, Zia A, Simpson JT, Quail MA, Moses A, Louis EJ, Durbin R, Liti G (2011) Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res 21:1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-de-Castro AM, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genom 13:179–195

    Article  CAS  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genoty** in model and non-model species. PLoS One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association map** of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM (2012a) Diversity in global maize germplasm: characterization and utilization. J Biosciences 37:843–855

    Article  CAS  Google Scholar 

  • Prasanna BM (2012b) Molecular breeding and biotechnology for maize improvement in the develo** world: challenges and opportunities. In: Proceedings of the 3rd National Maize Workshop of Ethiopia, pp 87–93

  • Prasanna BM, Hoisington DA (2003) Molecular breeding for maize improvement: an overview. Indian J Biotechnol 2:85–98

    CAS  Google Scholar 

  • Prasanna BM, Pixley K, Warburton ML, **e CX (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed 26:339–356

    Article  CAS  Google Scholar 

  • Prasanna B, Babu R, Nair S, Semagn K, Chikam V, Cairns J (2014) Molecular marker-assisted breeding for tropical maize improvement. In: Ramakrishna et al (eds) Genetics, genomics and breeding of maize. CRC, New York, pp 89–119

    Google Scholar 

  • Prigge V, Sanchez C, Dhillon BS, Schipprack W, Araus JL, Banziger M, Melchinger AE (2011) Doubled haploids in tropical maize: I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci 51:1498–1506

    Article  Google Scholar 

  • Prigge V, Schipprack W, Mahuku G, Atlin GN, Melchinger AE (2012a) Development of in vivo haploid inducers for tropical maize breeding programs. Euphytica 185:481–490

    Article  Google Scholar 

  • Prigge V, Xu XW, Li L, Babu R, Chen SJ, Atlin GN, Melchinger AE (2012b) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190:781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Jiang C, GonzalezdeLeon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize, Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Richard C, Osiru DS, Mwala MS, Lubberstedt T (2016) Genetic diversity and heterotic grou** of the core set of southern African and temperate maize (Zea mays L.) Inbred lines using SNP markers. Maydica 61(1):M3

  • Sabadin PK, de Souza CL, de Souza AP, Garcia AAF (2008) QTL map** for yield components in a tropical maize population using microsatellite markers. Hereditas 145:194–203

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu Q, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44(7):825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, bjørnstad Å, Xu Y (2010) The genetic dissection of quantitative traits in crops. Electron J Biotechnol 13:5

    Article  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genoty** using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Sharma L, Prasanna BM, Ramesh B (2010) Analysis of phenotypic and microsatellite-based diversity of maize landraces in India, especially from the North East Himalayan region. Genetica 138:619–631

    Article  CAS  PubMed  Google Scholar 

  • Shehata AI, Al-Ghethar HA, Al-Homaidan AA (2009) Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi J Biol Sci 16:57–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibov ST, De Souza CL, Garcia AAF, Garcia AF, Silva AR, Mangolin CA, Benchimol LL, De Souza AP (2003) Molecular map** in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas 139:96–106

    Article  PubMed  Google Scholar 

  • Sood S, Flint-Garcia S, Willcox MC, Holland JB (2014) Mining natural variation for maize improvement: Selection on phenotypes and genes. In: Tuberosa R et al (eds) Genomics of plant genetic resources. Springer, Netherlands, pp 615–649

    Chapter  Google Scholar 

  • Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, Buckler ES (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome 7(3). https://doi.org/10.3835/plantgenome2014.05.0023

  • Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang YD, Demeke M, Foulquie-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22:975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    Article  CAS  PubMed  Google Scholar 

  • Tamilkumar P, Senthil N, Sureshkumar S, Thangavelu AU, Nagarajan P, Vellaikumar S, Raveendran M (2014) Introgression of low phytic acid locus (lpa2-2) into an elite Maize (Zea mays L.) inbred through marker assisted backcross breeding. Aust J Crop Sci 8:1224–1231

    CAS  Google Scholar 

  • Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirunavukkarasu N, Hossain F, Arora K, Sharma R, Shiriga K, Mittal S, Mohan S, Namratha PM, Dogga S, Rani TS, Katragadda S, Rathore A, Shah T, Mohapatra T, Gupta HS (2014) Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association map**. BMC Genom 15:1182

    Article  CAS  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genoty** to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association map** population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu H, Aydin M, Filiz E (2015) Comparative analysis of embryo surrounding region (Esr-6) genes in Turkish maize varieties: sequencing and modeling. Braz J Bot 38:10

    Google Scholar 

  • Tuberosa R (2012) Phenoty** for drought tolerance of crops in the genomics era. Front Physiol 3:347–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002) Map** QTLs regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot (Lond) 89:941–963

    Article  CAS  Google Scholar 

  • Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom TM, Fries R, Pausch H, Bertani C, Davassi A, Mayer KF, Schön CC (2014) A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genoty** array. BMC Genom 15:232–233

    Article  Google Scholar 

  • Vadez V, Kholova J, Hummel G, Zhokhavets U, Gupta SK, Hash CT (2015) LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenoty** of traits controlling plant water budget. J Exp Bot 66:5581–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Martinant JP, Stich B (2012) Genome-wide association map** of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genom Biol 3:research/0034.11

    Article  Google Scholar 

  • Veldboom LR, Lee M (1996) Genetic map** of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci 36:1310–1319

    Article  CAS  Google Scholar 

  • Vielle-Calzada JP, de la Vega OM, Hernandez-Guzman G, Ibarra-Laclette E, Alvarez-Mejia C, Vega-Arreguin JC, Jimenez-Moraila B, Fernandez-Cortes A, Corona-Armenta G, Herrera-Estrella L, Herrera-Estrella A (2009) The palomero genome suggests metal effects on domestication. Science 326:1078–1078

    Article  CAS  PubMed  Google Scholar 

  • Vinayan MT, Babu R, Jyothsna T, Zaidi PH, Blummel M (2013) A note on potential candidate genomic regions with implications for maize stover fodder quality. Field Crop Res 153:102–106

    Article  Google Scholar 

  • Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity 112:30–38

    Article  CAS  PubMed  Google Scholar 

  • Warburton ML, **anchun X, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington D (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Article  Google Scholar 

  • Wasala SK, Prasanna BM (2012) Microsatellite marker-based diversity and population genetic analysis of selected lowland and mid-altitude maize landrace accessions of India. J Plant Biochem Biotechnol 22:392–400

    Article  CAS  Google Scholar 

  • Weber VS, Araus JL, Cairns JE, Sanchez C, Melchinger AE, Orsini E (2012) Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res 128:82–90

    Article  Google Scholar 

  • Wen W, Franco J, Chavez-Tovar VH, Yan J, Taba S (2012) Genetic characterization of a core set of a tropical maize race Tuxpeño for further use in maize improvement. PLoS One 7(3):e32626

  • White WG, Moose SP, Weil CF, McCann MC, Carpita NC, Below FE (2011) Tropical maize: exploiting maize genetic diversity to develop a novel annual crop for lignocellulosic biomass and sugar production. In: Routes to cellulosic ethanol. Springer, New York, pp 167–179

    Chapter  Google Scholar 

  • Xu Y, Skinner DJ, Wu H, Palacios-Rojas N, Araus JL, Yan J, Gao S, Warburton ML, Crouch JH (2009) Advances in maize genomics and their value for enhancing genetic gains from breeding. Int J Plant Genom 2009:957602

  • Xu J, Yuan YB, Xu YB, Zhang GY, Guo XS, Wu FK, Wang Q, Rong TZ, Pan GT, Cao MJ, Tang QL, Gao SB, Liu YX, Wang J, Lan H, Lu YL (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol 14:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Ren Y, Jian Y, Guo Z, Zhang Y, **e C, Fu J, Wang H, Li P (2017) Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Mol Breed 37:20–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan JB, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang XH, Skinner DJ, Fu ZY, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li JS, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010a) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    Article  CAS  PubMed  Google Scholar 

  • Yan JB, Yang XH, Shah T, Sanchez-Villeda H, Li JS, Warburton M, Zhou Y, Crouch JH, Xu YB (2010b) High-throughput SNP genoty** with the Golden Gate assay in maize. Mol Breed 25:441–451

    Article  CAS  Google Scholar 

  • Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2010) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526

    Article  Google Scholar 

  • Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Ali F, Wen WW, Liu J, Li JS, Yan JB (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9):e1004573

  • Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R (2015) QTL map** of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS One 10:e0124350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaidi PH, Seetharam K, Krishna G, Krishnamurthy L, Gajanan S, Babu R, Zerka R, Vinayan MT, Vivek BS (2016) Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). PloS one 11(10):e0164340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Vicente SF, Beyene Y, Semagn K, Crossa J (2014) Genomic selection for tropical maize improvement. In: Proceedings of 12th Asian maize work shop, Bangkok, pp 81–84

  • Zhang X, Perez-Rodriguez P, Semagn K, Beyene Y, Babu R, Lopez-Cruz MA, San Vicente F, Olsen M, Buckler E, Jannink JL, Prasanna BM, Crossa J (2015) Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114:291–299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Suri M. Sehgal, founder of SM Sehgal foundation for his continuous support and encouragement for corn improvement in develo** countries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thammineni Chakradhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakradhar, T., Hindu, V. & Reddy, P.S. Genomic-based-breeding tools for tropical maize improvement. Genetica 145, 525–539 (2017). https://doi.org/10.1007/s10709-017-9981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9981-y

Keywords

Navigation