Log in

Seismic Vulnerability of Tunnels in Jammu and Kashmir for Post Seismic Functionality

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

In the last few decades, Jammu and Kashmir has faced many moderate to large earthquake events that caused catastrophic damage to the physical infrastructure and significant socioeconomic loss. The growing number of infrastructure projects, as well as previous historical records of severe earthquakes in this area demand the study of the seismic vulnerability of tunnel. In this paper, an attempt has been made to develop the seismic fragility curves for circular tunnels located in four distinct zones classified based on seismic microzonation results of the Jammu Region (JR). The damage probabilities of shallow tunnels in these zones decrease fiercely as lining thickness increases. Furthermore, increasing PGA by 0.2 g increases the exceedance probabilities for minor, moderate, and extensive damage exposed to 82%, 89%, and 93%, respectively for shallow tunnels. The fragility functions proposed for Jammu and Kashmir were employed to assess seismic risk for tunnels under Udhampur Srinagar Baramulla Rail Link (USBRL) project. Most of the tunnels in Phase 3 showed more than 50% of damage probability for the region specific defined seismic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aicha B, Mezhoud S, Tayeb B, Toufik K, Abdelkader N (2022) Parametric study of shallow tunnel under seismic conditions for constantine motorway tunnel. Algeria Geotech Geolog Eng 40(4):2307–2318

    Article  Google Scholar 

  • American lifelines alliance (ALA), 2001. Seismic fragility formulations for water systems, part 1—Guideline; ASCE-FEMA: Reston, VA, USA

  • Andreotti G, Lai CG (2019) Use of fragility curves to assess the seismic vulnerability in the risk analysis of mountain tunnels. Tunn Undergr Space Technol 91:103008

    Article  Google Scholar 

  • Ansari A, Rao KS, Jain AK (2022) Seismic analysis of shallow tunnels in soil medium. In: Satyanarayana Reddy CNV, Muthukkumaran K, Vaidya R Stability of slopes and underground excavations, vol 185. Lecture Notes in Civil Engineering. Springer, Singapore, pp 343–352. https://doi.org/10.1007/978-981-16-5601-9_29

    Chapter  Google Scholar 

  • Ansari A, Zahoor F, Rao KS, Jain AK, Riyaz TU, (2021a) Seismic vulnerability of residential buildings in Jammu City, Jammu and Kashmir. In: Proceedings of the Indian geotechnical conference (IGC 2021a), Trichy, India.

  • Ansari A, Rao KS, Jain AK (2021b) Seismic hazard and risk assessment in Maharashtra: a critical review. In: Sitharam TG, Kolathayar S, Sharma ML Seismic hazards and risk, vol 116. Lecture Notes in Civil Engineering. Springer, Singapore, pp 35–45. https://doi.org/10.1007/978-981-15-9976-7_4

    Chapter  Google Scholar 

  • Ansari A, Zahoor F, Rao KS, Jain AK (2022a) Seismic hazard assessment studies based on deterministic and probabilistic approaches for the Jammu region. NW Himalayas Arabian J Geosci 15(11):1–26. https://doi.org/10.1007/s12517-022-10330-z

    Article  Google Scholar 

  • Ansari A, Rao KS, Jain AK (2022b) Damage analysis of seismic response of shallow tunnels in Jammu. In: Das BB, Hettiarachchi H, Sahu PK, Nanda S Recent developments in sustainable infrastructure (ICRDSI-2020)—GEO-TRA-ENV-WRM Lecture notes in civil engineering, vol 207. Springer, Singapore, pp 611–619. https://doi.org/10.1007/978-981-16-7509-6_47

    Chapter  Google Scholar 

  • Ansari A, Zahoor F, Rao KS, Jain AK (2022c) Deterministic approach for seismic hazard assessment of Jammu Region, Jammu Kashmir. In: Geo-Congress 2022c: Geophysical and earthquake engineering and soil dynamics, GSP 334, pp. 590–598. https://doi.org/10.1061/9780784484043.057

  • Ansari A, Zahoor F, Rao KS, Jain AK (2022d) Liquefaction hazard assessment in a seismically active region of Himalayas using geotechnical and geophysical investigations: a case study of the Jammu Region. Bull Eng Geol Env 81(9):1–19.

    Article  Google Scholar 

  • Ansari A, Rao KS, Jain AK (2022e) Damage Assessment of Tunnels in Seismic Prone Zone During Earthquakes: A Part of Hazard Evaluation. In: Sitharam TG, Kolathayar S, Jakka R Earthquakes and structures lecture notes in civil engineering, vol 188. Springer, Singapore, pp 161–169. https://doi.org/10.1007/978-981-16-5673-6_13

    Chapter  Google Scholar 

  • Ansari A, Rao, KS, Jain AK, & Ansari A (2022f) Deep learning model for predicting tunnel damages and track serviceability under seismic environment. Modeling Earth Systems Environment, 1–20. https://doi.org/10.1007/s40808-022-01556-7

  • Argyroudis SA, Pitilakis KD (2012a) Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dyn Earthq Eng 35:1–12

    Article  Google Scholar 

  • Argyroudis SA, Pitilakis KD (2012b) Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering 35:1–12. https://doi.org/10.1016/j.soildyn.2011.11.004

    Article  Google Scholar 

  • Asim KM, Martínez-Álvarez F, Basit A, Iqbal T (2017) Earthquake magnitude prediction in Hindukush region using machine learning techniques. Nat Hazards 85(1):471–486. https://doi.org/10.1007/s11069-016-2579-3

    Article  Google Scholar 

  • Aydan Ö, Ohta Y, Geniş M, Tokashiki N, Ohkubo K (2010) Response and stability of underground structures in rock mass during earthquakes. Rock Mech Rock Eng 43(6):857–875. https://doi.org/10.1007/s00603-010-0105-6

    Article  Google Scholar 

  • Bobet A (2010) Drained and undrained response of deep tunnels subjected to far-field shear loading. Tunn Undergr Space Technol 25(1):21–31. https://doi.org/10.1016/j.tust.2009.08.001

    Article  Google Scholar 

  • Callisto L, Ricci C (2019) Interpretation and back-analysis of the damage observed in a deep tunnel after the 2016 Norcia earthquake in Italy. Tunn Undergr Space Technol 89:238–248. https://doi.org/10.1016/j.tust.2019.04.012

    Article  Google Scholar 

  • Cilingir U, Madabhushi SG (2011) Effect of depth on seismic response of circular tunnels. Can Geotech J 48(1):117–127. https://doi.org/10.1139/T10-047

    Article  Google Scholar 

  • Corigliano M, Scandella L, Lai CG, Paolucci R (2011) Seismic analysis of deep tunnels in near fault conditions: a case study in Southern Italy. Bull Earthq Eng 9(4):975–995. https://doi.org/10.1007/s10518-011-9249-3

    Article  Google Scholar 

  • Durrani, A.J., Elnashai, A.S., Hashash, Y., Kim, S.J., Masud, A., 2005. The Kashmir earthquake of October 8, 2005: A quick look report. MAE Center CD Release 05–04.

  • Eskesen SD, Tengborg P, Kampmann J, Veicherts TH (2004) Guidelines for tunnelling risk management: international tunnelling association, working group No 2. Tunn Undergr Space Technol 19(3):217–237

    Article  Google Scholar 

  • Grasso P, Soldo L (2017) Risk analysis-driven design in tunnelling: the state-of-the-art, learnt from past experiences, and horizon for future development. Innov Infrastruct Solut 2(1):1–23

    Article  Google Scholar 

  • Hashash YM, Hook JJ, Schmidt B, John I, Yao C (2001) Seismic design and analysis of underground structures. Tunn Undergr Space Technol 16(4):247–293. https://doi.org/10.1016/S0886-7798(01)00051-7

    Article  Google Scholar 

  • Hayasi R, Masuda Y, Hashimoto S, Kuriyama S (2009) Photoelastic analysis of stress waves in building subjected to vertical impact under laboratory earthquake experiments. Int J Impact Eng 36(9):1150–1155. https://doi.org/10.1016/j.ijimpeng.2009.03.003

    Article  Google Scholar 

  • Hu X, Zhou Z, Chen H, Ren Y (2020) Seismic fragility analysis of tunnels with different buried depths in a soft soil. Sustainability 12(3):892. https://doi.org/10.3390/su12030892

    Article  Google Scholar 

  • Hu H, Huang Y, Zhao L, **ong M (2022) Shaking table tests on slope reinforced by anchored piles under random earthquake ground motions. Acta Geotechnica, 1–18 https://doi.org/10.1007/s11440-022-01525-5

  • Huang ZK, Pitilakis K, Tsinidis G, Argyroudis S, Zhang DM (2020) Seismic vulnerability of circular tunnels in soft soil deposits: the case of Shanghai metropolitan system. Tunn Undergr Space Technol 98:103341. https://doi.org/10.1016/j.tust.2020.103341

    Article  Google Scholar 

  • Jain A, Rao KS (2022) Linear classifiers for prediction of squeezing conditions in tunnels. Geotech Geolog Eng. https://doi.org/10.1007/s10706-022-02154-1

    Article  Google Scholar 

  • Jiang Y, Wang C, Zhao X (2010) Damage assessment of tunnels caused by the 2004 Mid Niigata prefecture Earthquake using Hayashi’s quantification theory type II. Nat Hazards 53(3):425–441. https://doi.org/10.1007/s11069-009-9441-9

    Article  Google Scholar 

  • Kouretzis GP, Andrianopoulos KI, Sloan SW, Carter JP (2014) Analysis of circular tunnels due to seismic P-wave propagation, with emphasis on unreinforced concrete liners. Comput Geotech 55:187–194. https://doi.org/10.1016/j.compgeo.2013.08.012

    Article  Google Scholar 

  • Le TS, Huh J, Park JH (2014) Earthquake fragility assessment of the underground tunnel using an efficient SSI analysis approach. J Appl Math Phys 2(12):1073. https://doi.org/10.4236/jamp.2014.212123

    Article  Google Scholar 

  • Mase LZ (2020) Seismic hazard vulnerability of Bengkulu City, Indonesia, based on deterministic seismic hazard analysis. Geotech Geol Eng 38(5):5433–5455

    Article  Google Scholar 

  • National Institute of Building Sciences (NIBS). HAZUS-MH., 2004. Technical manuals; Federal Emergency Management Agency and National Institute of Building Science: Washington, DC, USA

  • Nguyen DD, Park D, Shamsher S, Nguyen VQ, Lee TH (2019) Seismic vulnerability assessment of rectangular cut-and-cover subway tunnels. Tunn Undergr Space Technol 86:247–261

    Article  Google Scholar 

  • Osmi SKC, Ahmad SM (2016) Seismic fragility curves for shallow circular tunnels under different soil conditions. Int J Civ Environ Eng 10(10):1351–1357

    Google Scholar 

  • Osmi SC, Ahmad SM, Adnan A (2015) Seismic fragility analysis of underground tunnel buried in rock. In: Proceedings international conference on earthquake engineering and seismology, Springer, Germany

  • Park D, Nguyen DD, Lee TH, Nguyen VQ (2018) Seismic fragility evaluation of cut-and-cover tunnel. J Korean Geotech Soc 34(11):71–80. https://doi.org/10.7843/kgs.2018.34.11.71

    Article  Google Scholar 

  • Park KH, Tantayopin K, Tontavanich B, Owatsiriwong A (2009) Analytical solution for seismic-induced ovaling of circular tunnel lining under no-slip interface conditions: a revisit. Tunn Undergr Space Technol 24(2):231–235. https://doi.org/10.1016/j.tust.2008.07.001

    Article  Google Scholar 

  • Penzien J (2000) Seismically induced racking of tunnel linings. Earthquake Eng Struct Dynam 29(5):683–691

    Article  Google Scholar 

  • Putti SP, Satyam N (2020) Evaluation of site effects using HVSR microtremor measurements in Vishakhapatnam (India). Earth Syst Environ 4(2):439–454. https://doi.org/10.1007/s41748-020-00158-6

    Article  Google Scholar 

  • Rao KS (2020) Characterization, modelling and engineering of rocks and rockmasses. Indian Geotech J 50(1):1–95

    Article  Google Scholar 

  • Rao KS, Ansari A, Zaray AH (2022) Deadliest Earthquake in 2022: the Afghanistan earthquake on June 22nd. IGS NEWS 54(2):10–11

    Google Scholar 

  • Rao KS, Rathod GW (2014) Seismic microzonation of Indian megacities: a case study of NCR Delhi. Indian Geotech J 44(2):132–148. https://doi.org/10.1007/s40098-013-0084-0

    Article  Google Scholar 

  • Rao KS (2022) The Art of Tunnelling in Challenging Himalayan Ground Conditions. 8th IGS Ferroco Terzaghi Oration 2022, IIT Bombay India

  • Roy N, Sarkar R (2017) A review of seismic damage of mountain tunnels and probable failure mechanisms. Geotech Geol Eng 35(1):1–28. https://doi.org/10.1007/s10706-016-0091-x

    Article  Google Scholar 

  • Salmon, M., Wang, J., Jones, D., & Wu, C. 2003. Fragility formulations for the BART system. In Advancing mitigation technologies and disaster response for lifeline systems (pp. 183–192).

  • Shahrour I, Khoshnoudian F, Sadek M, Mroueh H (2010) Elastoplastic analysis of the seismic response of tunnels in soft soils. Tunn Undergr Space Technol 25(4):478–482. https://doi.org/10.1016/j.tust.2010.01.006

    Article  Google Scholar 

  • Shrestha R, Li X, Yi L, Mandal AK (2020) Seismic damage and possible influencing factors of the damages in the Melamchi tunnel in Nepal due to Gorkha earthquake 2015. Geotech Geol Eng 38(5):5295–5308

    Article  Google Scholar 

  • Sitharam TG, Govindaraju L (2004) Geotechnical aspects and ground response studies in Bhuj earthquake. India Geotech Geolog Eng 22(3):439–455

    Article  Google Scholar 

  • Srivastav A, Satyam N (2020) Understanding the impact of the earthquake on circular tunnels in different rock mass: a numerical approach. Innov Infrastruct Solut 5(1):1–9. https://doi.org/10.1007/s41062-020-0278-0

    Article  Google Scholar 

  • Srivastav A, Satyam N, Rajan KS (2022) Seismic vulnerability assessment of steel fiber reinforced shotcrete lined (SFRS) tunnel: a himalayan case study. J Geol Soc India 98(2):185–192. https://doi.org/10.1007/s12594-022-1957-6

    Article  Google Scholar 

  • Tanimura S, Mimura K, Nonaka T, Wenhui ZHU (2000) Dynamic failure of structures due to the great Hanshin-Awaji earthquake. Int J Impact Eng 24(6–7):583–596. https://doi.org/10.1016/S0734-743X(99)00049-4

    Article  Google Scholar 

  • Tanimura S, Sato T, Umeda T, Mimura K, Yoshikawa O (2002) A note on dynamic fracture of the bridge bearing due to the great Hanshin-Awaji earthquake. Int J Impact Eng 27(2):153–160. https://doi.org/10.1016/S0734-743X(01)00037-9

    Article  Google Scholar 

  • Tsinidis G, de Silva F, Anastasopoulos I, Bilotta E, Bobet A, Hashash YM, Fuentes R (2020a) Seismic behaviour of tunnels: from experiments to analysis. Tunn Undergr Space Technol 99:103334

    Article  Google Scholar 

  • Tsinidis G, de Silva F, Anastasopoulos I, Bilotta E, Bobet A, Hashash YM, He C, Kampas G, Knappett J, Madabhushi G, Nikitas N (2020) Seismic behaviour of tunnels: from experiments to analysis. Tunn Undergr Space Technol 99:103334

    Article  Google Scholar 

  • Wang Z, Li B (2021) Stability analysis of slope and diversion water tunnel of hydropower station under strong earthquake. Geotech Geol Eng 39(3):2041–2049

    Article  Google Scholar 

  • Wang YH, Tang Q, Su MN, Tan JK, Wang WY, Lan YS, Luo W, Zhou Y (2020) Post-earthquake fire performance of square concrete-filled steel tube columns. Thin-Walled Struct 154:106873. https://doi.org/10.1016/j.tws.2020.106873

    Article  Google Scholar 

  • Wang WL, Wang TT, Su JJ, Lin CH, Seng CR, Huang TH (2001) Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunn Undergr Space Technol 16(3):133–150. https://doi.org/10.1016/S0886-7798(01)00047-5

    Article  Google Scholar 

  • Wang, J.N., 1993. Seismic Design of Tunnels: A State-of-the-Art Approach. Monograph 7. New York: Parsons Brinckerhoff Quade and Douglas. Inc. Wu, C.

  • Wani AR, Alamgir J (2017) Murre formation and geological problems encountered and mitigation thereof. Him Prabhat IX:11–23

  • Yao Y, Wang R, Liu T, Zhang JM (2019) Seismic response of high concrete face rockfill dams subjected to non-uniform input motion. Acta Geotech 14(1):83–100

    Article  Google Scholar 

  • You K, Park Y, Lee JS (2005) Risk analysis for determination of a tunnel support pattern. Tunn Undergr Space Technol 20(5):479–486

    Article  Google Scholar 

  • Yu HT, Chen JT, Yuan Y, Zhao X (2016) Seismic damage of mountain tunnels during the 5 12 Wenchuan earthquake. J Mt Sci 13(11):1958–1972

    Article  Google Scholar 

  • Yusoff R, Adhikari KN (2017) Geological studies for construction of T-74R- problems and solutions. Him Prabhat VIII:28–47

  • Zhang GH, Jiao YY, Chen LB, Wang H, Li SC (2015) Analytical model for assessing collapse risk during mountain tunnel construction. Can Geotech J 53(2):326–342

    Article  Google Scholar 

  • Zhao K, Jiang N, Zhou C, Li H, Cai Z, Zhu B (2022) Dynamic behavior and failure of buried gas pipeline considering the pipe connection form subjected to blasting seismic waves. Thin-Walled Struct 170:108495. https://doi.org/10.1016/j.tws.2021.108495

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Ansari.

Ethics declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Conflict of interest

We know of no conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. As the corresponding author, I confirm that the manuscript has been read and approved for submission by all the named authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Example 1: Ovaling deformation of a circular tunnel at shallow depth using formulations of Bobet approach (Bobet 2010).

Moment Magnitude, Mw

 

7.5

Source-to-site distance

km

15.00

Peak ground particle acceleration at surface, amax

g

0.50

Stiff soil, ρm

kg/m3

1600.00

Shear wave velocity, Cm

m/s

200.00

Poisson's ratio, νm

 

0.30

Mean diameter, d

m

6.0

Mean radius, r

m

3.0

Lining thickness

m

0.30

Young's modulus of lining, El

GPa

35,355.25

Poisson's ratio of lining, νl

 

0.15

  1. 1.

    Maximum Thrust (Tmax) for full slip condition

    $${\mathrm{T}}_{\mathrm{max}}=-\frac{12\left(1-{\upnu }_{\mathrm{m}}\right) }{3\left(5-{6\upnu }_{\mathrm{m}}\right)+\left(1-{\upnu }_{\mathrm{m}}\right)\mathrm{F{^{\prime}}}}{\mathrm{G}}_{\mathrm{m}}\mathrm{r}{\Upsilon }_{\mathrm{max}}\mathrm{Sin}2\uptheta =120.76\mathrm{ kN}$$
  2. 2.

    Maximum Thrust (Tmax) for no slip condition

    $${\mathrm{T}}_{\mathrm{max}}=-\left(1-{\mathrm{C}}_{2}\right){\mathrm{G}}_{\mathrm{m}}\mathrm{r}{\Upsilon }_{\mathrm{max}}\mathrm{Sin}2\uptheta =1176.32\mathrm{ kN}$$
  3. 3.

    Maximum Bending Moment (Mmax) for full slip condition

    $${\mathrm{M}}_{\mathrm{max}}={\mathrm{T}}_{\mathrm{max }}.\mathrm{r}=362.28\mathrm{ kN}.\mathrm{m}$$
  4. 4.

    Maximum Bending Moment (Mmax) for no slip condition

    $${\mathrm{M}}_{\mathrm{max}}=-\frac{1}{2}(1+{\mathrm{C}}_{1}+{\mathrm{C}}_{2}){\mathrm{G}}_{\mathrm{m}}{\mathrm{r}}^{2}{\Upsilon }_{\mathrm{max}}\mathrm{Sin}2\uptheta =304.64\mathrm{ kN}.\mathrm{m}$$

Example 2: Ovaling deformation of a circular tunnel at deeper depth using formulations of Kouretzis et al. approach (Kouretzis et al. 2014).

Moment Magnitude, Mw

 

7.5

Source-to-site distance

km

17.00

Peak ground particle acceleration at surface, amax

g

0.70

Stiff soil, ρm

kg/m3

2500.00

Shear wave velocity, Cm

m/s

750.00

Poisson's ratio, νm

 

0.25

Mean diameter, d

m

6.0

Mean radius, r

m

3.0

Lining thickness

m

0.30

Young's modulus of lining, El

GPa

35,355.25

Poisson's ratio of lining, νl

 

0.15

  1. 1.

    Maximum Thrust (Tmax) for full slip condition

    $${\mathrm{T}}_{\mathrm{max}}=\mp \left[{\mathrm{K}}_{3}+{\mathrm{K}}_{5}\right]{\upsigma }_{\mathrm{max}}\mathrm{r}/2=129.35\mathrm{ kN}$$
  2. 2.

    Maximum Thrust (Tmax) for no slip condition

    $${\mathrm{T}}_{\mathrm{max}}=\mp \left[{\mathrm{K}}_{3}+{\mathrm{K}}_{4}\right]{\upsigma }_{\mathrm{max}}\mathrm{r}/2=289.56\mathrm{ kN}$$
  3. 3.

    Maximum Bending Moment (Mmax) for full slip condition

    $${\mathrm{M}}_{\mathrm{max}}=\mp \left[\frac{\mathrm{C}\left(1-{2\upnu }_{\mathrm{m}}\right)}{6\mathrm{F}}{\mathrm{K}}_{3}+{\mathrm{K}}_{5}\right]{\upsigma }_{\mathrm{max}}{\mathrm{r}}^{2}/2=2732.45\mathrm{ kN}.\mathrm{m}$$
  4. 4.

    Maximum Bending Moment (Mmax) for no slip condition

    $${\mathrm{M}}_{\mathrm{max}}=\mp \left[\frac{\mathrm{C}\left(1-{2\upnu }_{\mathrm{m}}\right)}{6\mathrm{F}}{\mathrm{K}}_{3}-\frac{{\mathrm{K}}_{4}}{2}-{\mathrm{K}}_{6}+1\right]{\upsigma }_{\mathrm{max}}{\mathrm{r}}^{2}/2=2354.92\mathrm{ kN}.\mathrm{m}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A., Rao, K.S. & Jain, A.K. Seismic Vulnerability of Tunnels in Jammu and Kashmir for Post Seismic Functionality. Geotech Geol Eng 41, 1371–1396 (2023). https://doi.org/10.1007/s10706-022-02341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-022-02341-0

Keywords

Navigation