Log in

Environmental Performance of Lime–Rice Husk Ash Stabilized Lateritic Soil Contaminated with Lead or Naphthalene

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

This study evaluates the environmental performance of a lime–rice husk ash stabilized lateritic soil that had been contaminated with either lead or naphthalene. The Lime and Rice husk ash mixed in a ratio of 1:2 was used as a stabilizing binder and added to the contaminated soil at diverse quantities of 5 and 10% by weight of the contaminated samples. Environmental performance of the soil-contaminant-binder mixes were evaluated from the leaching and batch equilibrium adsorption tests conducted on the samples. Mineralogical analysis was also carried out on the leached samples using the X-ray diffractometer to determine the predominant minerals. The leaching test revealed that the lead concentration in the leachate was reduced below the allowable standard limit of 5 mg/l for lead, even after a duration of disturbed shaking at pH 3 ± 0.5 as the binder addition was increased from 0 to 5 to 10%. The binder addition was not effective to reduce the leachate concentrations of the naphthalene contaminant below the allowable standard limit for naphthalene in soil which is 0.2 µg/l. The batch equilibrium adsorption test showed that lateritic soil had a good adsorption capacity for both contaminants, which increased with an increase in the binder addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akgerman A, Zardkoohi M (1996) Adsorption of phenolic compounds on fly ash. J Chem Eng Data 41(2):185–187. doi:10.1021/je9502253

    Article  Google Scholar 

  • Bartlett CL, Cline SP, Epps DE, Jurinak JJ, Noll MR, EI Du Pont de Nemours (1994) Process for isolating contaminated soil. US Patent 5,370,478

  • Bello AA, Osinubi KJ (2011) Attenuative capacity of compacted abandoned dumpsite soils. Electron J Geotech Eng 16:71–91

  • British Standard Institute (1990) Methods of test for soil for civil engineering purposes: BS 1377. British Standard Institute, London

    Google Scholar 

  • Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003) Lead transformation and distribution in the soils of shooting ranges in Florida. USA Sci Total Environ 307(1):179–189. doi:10.1016/S0048-9697(02)00543-0

    Article  Google Scholar 

  • Chmeisse C (1992) Soil stabilization using some pozzolanic industrial and agricultural products. Doctor of Philosophy thesis, Department of Civil and Mining Engineering, University of Wollongong

  • Chrysochoou M, Dermatas D, Grubb DG (2007) Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. J Hazard Mater 144(1–2):1–14. doi:10.1016/j.jhazmat.2007.02.008

    Article  Google Scholar 

  • Conner JR, Hoeffner SL (1998) A critical review of stabilization/solidification technology. Crit Rev Environ Sci Tech 28(4):397–462. doi:10.1080/10643389891254250

    Article  Google Scholar 

  • Demirkan MM (2008) Remediation of petroleum contaminated soils and groundwater using high carbon content fly ash. Unpublished Ph.D. Thesis. Department of Civil and Environmental Engineering, University of Maryland, College Park, USA

  • Dermatas D, Menounou N, Dadachov M, Dutko P, Shen G, Xu X, Tsaneva V (2006) Lead leachability in firing range soils. Environ Eng Sci 23(1):88–101. doi:10.1089/ees.2006.23.88

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1–31. doi:10.1016/j.jhazmat.2007.10.043

    Article  Google Scholar 

  • Doick KJ, Lee HP, Semple KT (2003) Assessment of spiking procedures for the introduction of a phenanthrene LNAPL mixture into field wet soil. Environ Pollut 126(3):399–406. doi:10.1016/S0269-7491(03)00230-6

    Article  Google Scholar 

  • Eades JL, Grim RE (1960) Reaction of hydrated lime with pure clay minerals in soil stabilization. Bulletin 262, Highway Research Board, Washington DC

  • Eberemu AO (2011) Consolidation properties of compacted lateritic soil treated with rice husk ash. J Geomat (GM) 1(3):70–78. doi:10.4236/gm.2011.13011

    Article  Google Scholar 

  • EuroSoilStab (2002) Development of design and construction methods to stabilize soft organic soils: design guide for soft soil stabilization. CT97-0351, European Commission, Industrial and Materials Technologies Programme (Rite-EuRam III) Bryssel

  • Falciglia PP, Al-Tabbaa A, Vagliasindi FG (2014) Development of a performance threshold approach for identifying the management options for stabilisation/solidification of lead polluted soils. J Environ Eng Landsc Manag 22(2):85–95. doi:10.3846/16486897.2013.821070

    Article  Google Scholar 

  • Ghasemzadeh H, Tabaiyan M (2017) The effect of diesel fuel pollution on the efficiency of soil stabilizatio method. Geotech Geol Eng 35(1):475–484. doi:10.1007/s10706-016-0121-8

    Article  Google Scholar 

  • Ikeura H, Kawasaki Y, Kaimi E, Nishiwaki J, Noborio K, Tamaki M (2016) Screening of plants for phytoremediation of oil-contaminated soil. Int J Phytorem 18(5):460–466. doi:10.1080/15226514.2015.1115957

    Article  Google Scholar 

  • Jankaite A, Vasarevičius S (2005) Remediation technologies for soils contaminated with heavy metals. J Environ Eng Landsc Manag 13(2):109–113. doi:10.1080/16486897.2005.9636854

    Google Scholar 

  • Janoš P, Buchtova H, Rýznarová M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37(20):4938–4944. doi:10.1016/j.watres.2003.08.011

    Article  Google Scholar 

  • Kamnikar B (2001) Managing petroleum contaminated soil: department of transportation perspective. J Environ Eng 127(12):1080–1088. doi:10.1061/(ASCE)0733-9372(2001)127:12(1080)

    Article  Google Scholar 

  • Kogbara RB, Yi Y, Al-Tabbaa A (2011) Process envelopes for stabilisation/solidification of contaminated soil using lime–slag blend. Environ Sci Pollut Res 18(8):1286–1296. doi:10.1007/s11356-011-0480-x

    Article  Google Scholar 

  • Konstantinou IK, Albanis TA (2000) Adsorption–desorption studies of selected herbicides in soil-fly ash mixtures. J Agric Food Chem 48(10):4780–4790. doi:10.1021/jf0003606

    Article  Google Scholar 

  • López-Vizcaíno R, Navarro V, Alonso J, Yustres Á, Cañizares P, Rodrigo MA, Sáez C (2016) Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation. J Environ Sci Health Part A 51(1):44–51. doi:10.1080/10934529.2015.1079106

    Article  Google Scholar 

  • Massazza F (1998) Pozzolana and pozzolanic cements. Lea’s Chem Cem Concr 4:471–635. doi:10.1016/B978-075066256-7/50022-9

    Article  Google Scholar 

  • Northcott GL, Jones KC (2000) Spiking hydrophobic organic compounds into soil and sediment: a review and critique of adopted procedures. Environ Toxicol Chem 19(10):2418–2430. doi:10.1002/etc.5620191005

    Article  Google Scholar 

  • Ojuri OO, Ola SA (2010) Estimation of contaminant transport parameters for a tropical sand in a sand tank model. Int J Environ Sci Tech 7(2):385–394. doi:10.1007/BF03326148

    Article  Google Scholar 

  • Ojuri OO, Oluwatuyi OE (2014) Strength characteristics of lead and hydrocarbon contaminated lateritic soils stabilized with lime–rice husk ash. Electron J Geotech Eng 19:10027–10042

    Google Scholar 

  • Ojuri OO, Taiwo OA, Oluwatuyi OE (2016) Heavy metal migration along a rural highway route: Ilesha–Akure Roadside Soil, Southwestern, Nigeria. Glob Nest J 18(4):742–760

    Google Scholar 

  • Ola SA (1978) Geotechnical properties and behaviour of some stabilized Nigerian lateritic soils. Q J Eng Geol Hydrog 11(2):145–160. doi:10.1144/GSL.QJEG.1978.011.02.04

    Article  Google Scholar 

  • Omar M, Shanableh A (2016) Evaluation of methods used for reducing heavy metal leaching from sandy soil. Geotech Geol Eng 34(5):1413–1423. doi:10.1007/s10706-016-0051-5

    Article  Google Scholar 

  • Paria S, Yuet PK (2006) Solidification/stabilization of organic and inorganic contaminants using Portland cement: a literature review. Environ Rev 14(4):217–255. doi:10.1139/a06-004

    Article  Google Scholar 

  • Rodríguez-Seijo A, Cachada A, Gavina A, Duarte AC, Vega FA, Andrade ML, Pereira R (2017) Lead and PAHs contamination of an old shooting range: a case study with a holistic approach. Sci Total Environ 575:367–377. doi:10.1016/j.scitotenv.2016.10.018

    Article  Google Scholar 

  • Shah SJ, Shroff AV, Patel JV, Tiwari KC, Ramakrishnan D (2003) Stabilization of fuel oil contaminated soil—a case study. Geotech Geol Eng 21(4):415–427. doi:10.1023/B:GEGE.0000006052.61830.1a

    Article  Google Scholar 

  • Siebielec G, Chaney RL (2012) Testing amendments for remediation of military range contaminated soil. J Environ Manag 108:8–13. doi:10.1016/j.jenvman.2012.04.028

    Article  Google Scholar 

  • Squillace PJ, Moran MJ, Lapham WW, Price CV, Clawges RM, Zogorski JS (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995. Environ Sci Tech 33(23):4176–4187. doi:10.1021/es990234m

    Article  Google Scholar 

  • Tang IY, Yan DY, Lo IM, Liu T (2015) Pulverized fuel ash solidification/stabilization of waste: comparison between beneficial reuse of contaminated marine mud and sediment. J Environ Eng Landsc Manag 23(3):202–210. doi:10.3846/16486897.2015.1021699

    Article  Google Scholar 

  • Tardy BA, Bricka RM, Larson SL (2003) Chemical stabilization of lead in small arms firing range soils. No. ERDC/EL-TR-03-20. Engineer Research and Development Center Vicksburg Ms Environmental Lab

  • Tuncan A, Tuncan M, Koyuncu H (2000) Use of petroleum contaminated drilling wastes as subbase material for road construction. Waste Manag Res 18(5):489–505. doi:10.1034/j.1399-3070.2000.00135.x

    Article  Google Scholar 

  • U.S. Environmental Protection Agency, USEPA (1999) Test methods for evaluating solid waste: physical/chemical methods. SW-846, 3rd ed, Final update, Cincinnati, OH

  • Vinter S, Montañés MT, Bednarik V, Hrivnova P (2016) Stabilization/solidification of hot dip galvanizing ash using different binders. J Hazard Mater 320:105–113. doi:10.1016/j.jhazmat.2016.08.023

    Article  Google Scholar 

  • Wasay SA, Barrington S, Tokunaga S (2001) Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns. Water Air Soil Pollut 127(1):301–314. doi:10.1023/A:1005251915165

    Article  Google Scholar 

  • Wiles CC (1987) A review of solidification/stabilization technology. J Hazard Mater 14(1):5–21. doi:10.1016/0304-3894(87)87002-4

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Professor S. A. Ola for his wonderful advice, while reviewing this work. Dr. A. A. Bello and Dr. (Mrs.) Ijagbemi for providing relevant information and insight to the research work as regards Batch Equilibrium Adsorption tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Opeyemi E. Oluwatuyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwatuyi, O.E., Ojuri, O.O. Environmental Performance of Lime–Rice Husk Ash Stabilized Lateritic Soil Contaminated with Lead or Naphthalene. Geotech Geol Eng 35, 2947–2964 (2017). https://doi.org/10.1007/s10706-017-0294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-017-0294-9

Keywords

Navigation