Log in

Identification of embryonic stem cell activities in an embryonic cell line derived from marine medaka (Oryzias dancena)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study was conducted to identify embryonic stem cell (ESC) activities of a long-term cultured embryonic cell line previously derived from blastula-stage Oryzias dancena embryos. Five sub-cell lines were established from the embryonic cell line via clonal expansion of single cells. ESC activities, including clonogenicity, alkaline phosphatase (AP) activity, and differentiation capacity, were examined in the five sub-cell lines. We observed both clonogenicity and AP activity in all five sub-cell lines, but the proportion of cells that exhibited both properties was significantly different among them. Even though we detected different formation rates and sizes of embryoid body (EB) among these cells, all lines were stably able to form EBs and further induction for differentiation showed their capability to differentiate into other cell types in a spontaneous manner. From this study, we determined that the embryonic cell lines examined possessed heterogeneous ESC activities and can be utilized as a marine model system for fish ESC-based research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Béjar J, Hong Y, Alvarez MC (2002) An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera production. Transgenic Res 11:279–289

    Article  PubMed  Google Scholar 

  • Camper SA, Saunders TL, Kendall SK, Keri RA, Seasholtz AF, Gordon DF, Birkmeier TS, Keegan CE, Karolyi IJ, Roller ML, Burrows HL, Samuelson LC (1995) Implementing transgenic and embryonic stem cell technology to study gene expression, cell-cell interactions and gene function. Biol Reprod 52:246–257

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Ye H, Sha Q, Shi CY (2003) Derivation of a pluripotent embryonic cell line from red sea bream blastulas. J Fish Biol 63:795–805

    Article  Google Scholar 

  • Chen SL, Sha ZX, Ye HQ, Liu Y, Tian YS, Hong Y, Tang QS (2007) Pluripotency and chimera competence of an embryonic stem cell line from the sea perch (Lateolabrax japonicus). Mar Biotechnol 9:82–91

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Jia W, Wang K, Zhou Q, Leng Y, Duan T, Kang J (2012) Retinoic acid regulates germ cell differentiation in mouse embryonic stem cells through a Smad-dependent pathway. Biochem Biophys Res Commun 418:571–577

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Lee SY, Kim YK, Kim DS, Nam YK (2011) Functional ability of cytoskeletal β-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena. Transgenic Res 20:1333–1355

    Article  CAS  PubMed  Google Scholar 

  • Dash C, Routray P, Tripathy S, Verma DK, Guru BC, Meher PK, Nandi S, Eknath AE (2010) Derivation and characterization of embryonic stem-like cells of Indian major carp Catla catla. J Fish Biol 77:1096–1113

    Article  CAS  PubMed  Google Scholar 

  • Doss MX, Koehler CI, Gissel C, Hescheler J, Sachinidis A (2004) Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med 8:465–473

    Article  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Gong SP, Kim B, Kwon HS, Yang WS, Jeong JW, Ahn J, Lim JM (2014) The co-injection of somatic cells with embryonic stem cells affects teratoma formation and the properties of teratoma-derived stem cell-like cells. PLoS ONE 9:e105975

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:391–401

    Article  CAS  PubMed  Google Scholar 

  • Ho SY, Goh CW, Gan JY, Lee YS, Lam MK, Hong N, Hong Y, Chan WK, Shu-Chien AC (2014) Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 11:407–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holen E, Hamre K (2003) Towards obtaining long term embryonic stem cell like cultures from a marine flatfish, Scophtalmus maximus. Fish Physiol Biochem 29:245–252

    Article  CAS  Google Scholar 

  • Hong Y, Winkler C, Schartl M (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Rampalli S, Lee JB, McNicol J, Collins T, Draper JS, Bhatia M (2011) Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell Stem Cell 9:24–36

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Takei Y (2002) Diverse adaptability in Oryzias species to high environmental salinity. Zool Sci 19:727–734

    Article  PubMed  Google Scholar 

  • Inoue K, Takei Y (2003) Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B 136:635–645

    Article  PubMed  Google Scholar 

  • Kennedy KA, Porter T, Mehta V, Ryan SD, Price F, Peshdary V, Karamboulas C, Savage J, Drysdale TA, Li SC, Bennett SA, Skerjanc IS (2009) Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative β-catenin. BMC Biol 7:67. doi:10.1186/1741-7007-7-67

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim M, Habiba A, Doherty JM, Mills JC, Mercer RW, Huettner JE (2009) Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev Biol 328:456–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim MS, Lee ST, Lim JM, Gong SP (2014) Medium composition for effective slow freezing of embryonic cell lines derived from marine medaka (Oryzias dancena). Cytotechnology. doi:10.1007/s10616-014-9749-5

    PubMed  Google Scholar 

  • Lee D, Kim MS, Nam YK, Kim DS, Gong SP (2013) Establishment and characterization of permanent cell lines from Oryzias dancena embryos. Fish Aquat Sci 16:177–185

    Google Scholar 

  • Metallo CM, Ji L, de Pablo JJ, Palecek SP (2008) Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells 26:372–380

    Article  CAS  PubMed  Google Scholar 

  • Parameswaran V, Shukla R, Bhonde R, Hameed AS (2007) Development of a pluripotent ES-like cell line from Asian sea bass (Lates calcarifer)—an oviparous stem cell line mimicking viviparous ES cells. Mar Biotechnol 9:766–775

    Article  CAS  PubMed  Google Scholar 

  • Shim JH, Kim SE, Woo DH, Kim SK, Oh CH, McKay R, Kim JH (2007) Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Stewart MH, Bosse M, Chadwick K, Menendez P, Bendall SC, Bhatia M (2006) Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat Methods 3:807–815

    Article  CAS  PubMed  Google Scholar 

  • Torres J, Prieto J, Durupt FC, Broad S, Watt FM (2012) Efficient differentiation of embryonic stem cells into mesodermal precursors by BMP, retinoic acid and notch signaling. PLoS ONE 7:e36405. doi:10.1371/journal.pone.0036405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    Article  CAS  PubMed  Google Scholar 

  • Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433

    Article  CAS  PubMed  Google Scholar 

  • Yi M, Hong N, Hong Y (2010) Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nat Protoc 5:1418–1430

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Ji X, Zhang F, Li L, Ma L (2012) Embryonic stem cell markers. Molecules 17:6196–6236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A1011572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Pyo Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Ryu, J.H., Lee, S.T. et al. Identification of embryonic stem cell activities in an embryonic cell line derived from marine medaka (Oryzias dancena). Fish Physiol Biochem 41, 1569–1576 (2015). https://doi.org/10.1007/s10695-015-0108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0108-z

Keywords

Navigation