Log in

Effect of prebiotic konjac mannanoligosaccharide on growth performances, intestinal microflora, and digestive enzyme activities in yellow catfish, Pelteobagrus fulvidraco

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, konjac mannanoligosaccharide (KMOS) was evaluated as a prebiotic in yellow catfish. The fish were fed with diets containing KMOS in four concentrations: 0 g kg−1 (C), 1.0 g kg−1 (KM1), 2.0 g kg−1 (KM2), and 3.0 g kg−1 (KM3) for 49 days, respectively. Another group fed with diets containing 3.0 g kg−1 yeast cell wall mannanoligosaccharide (MOS) (M3) was set as positive control. The results indicated that fish receiving the diets supplemented with KMOS or MOS showed higher relative gain rate (RGR), specific growth rate (SGR), and lower feed conversion ratio (FCR) with significantly differences (P < 0.05) than those fed with the basal diets. Moreover, fish receiving the diets with 2.0 g kg−1 KMOS inclusion showed higher RGR, SGR, and lower FCR (P < 0.05) than that feeding the diets supplemented with 3.0 g kg−1 MOS. The quantities of Bifidobacterium spp. were significantly increased (P < 0.05). Meanwhile, Escherichia coli and Aeromonas spp. were significantly reduced (P < 0.05) in the fish-feeding diets with 2.0 g kg−1 KMOS supplement. Compared with the control group, the significantly enhancement of protease and amylase activity (P < 0.05) in intestine and pancreas was observed in fish fed with diets containing KMOS or MOS. Collectively, an optimum level of KMOS inclusion in diets could modulate intestinal microflora, induce digestive enzyme activity, and improve the growth performance of yellow catfish significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agr 87:1758–1766

    Article  CAS  Google Scholar 

  • Borlongan IG (1990) Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89:315–325

    Article  CAS  Google Scholar 

  • Connolly ML, Lovegrove JA, Tuohy KM (2010) Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods 2:219–224

    Article  CAS  Google Scholar 

  • Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1:1–29

    Google Scholar 

  • Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J Anim Sci 87:3226–3234

    Article  CAS  PubMed  Google Scholar 

  • Dimitroglou A, Lee Merrifield D, Spring P, Sweetman J, Moate R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 300:182–188

    Article  CAS  Google Scholar 

  • Dong JF, Fan QX, Zhang L, Li B, Yang K, Fang W (2008) Effects of early size grading on growth, survival and sex ratio of Pelteobagrus fulvidraco Richardson. J Huazhong Agric Univ 27:400–404 China

    Google Scholar 

  • Fernandez F, Hinton M, Van Gils B (2002) Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathol 31:49–58

    Article  CAS  PubMed  Google Scholar 

  • Iji PA, Saki AA, Tivey DR (2001) Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. J Sci Food Agric 81:1186–1192

    Article  CAS  Google Scholar 

  • Khantaphant S, Benjakul S (2008) Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp Biochem Phys B 151:410–419

    Article  Google Scholar 

  • Kopečný J, Mrázek J, Killer J (2010) The presence of bifidobacteria in social insects, fish and reptiles. Folia Microbiol 55(4):336–339

    Article  Google Scholar 

  • Medical chemical laboratory of Shanghai (1979) Manual of Clinical Biochemistry. Shanghai Science and Technology Press, Shanghai, pp 366–367

    Google Scholar 

  • Mikkelsen LL, Jensen BB (2004) Effect of fructo-oligosaccharides and transgalacto-oligosaccharides on microbial populations and microbial activity in the gastrointestinal tract of piglets post-weaning. Anim Feed Sci Technol 117:107–109

    Article  CAS  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    Article  CAS  Google Scholar 

  • Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82:627–631

    Article  CAS  PubMed  Google Scholar 

  • Rijkers GT, Van Oosterom R, Van Muiswinkel WB (1981) The immune system of cyprinid fish. Oxytetracycline and regulation of humoral immunity in carp. Vet Immunol Immunopathol 2:281–290

    Article  CAS  PubMed  Google Scholar 

  • Salze G, McLean E, Schwarz MH, Craig SR (2008) Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture 274:148–152

    Article  CAS  Google Scholar 

  • Sang HM, Ky LT, Fotedar R (2009) Dietary supplementation of mannan oligosaccharide improves the immune responses and survival of marron, Cherax tenuimanus (Smith, 1912) when challenged with different stressors. Fish Shellfish Immunol 27:341–348

    Article  CAS  PubMed  Google Scholar 

  • Sang HM, Fotedar R, Filer K (2011) Effects of dietary of mannan oligosaccharide on the survival, growth, immunity and digestive enzyme activity of freshwater crayfish, Cherax destructor Clark (1936). Aquac Nutr 17:629–635

    Article  Google Scholar 

  • Sims MD, Dawson KA, Newman KE, Spring P, Hooger DM (2004) Effects of dietary mannan oligosaccharide, bacitracin methylene disalicylate, or both on the live performance and intestinal microbiology of turkeys. Poult Sci 83:1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Sissons JW (1989) Potential of probiotic organisms to prevent diarrhea and promote digestion in farm animals: a review. J Sci Food Agric 49:1–13

    Article  Google Scholar 

  • Spais AB, Giannenas AI, Florou-Paneri P, Christaki E, Botsoglou NA (2003) Effect of the feed supplement Bio-Mos, a mannan oligosaccharide, on the performance of broiler chickens. Hell Vet Med Soc 54:111–118

    Google Scholar 

  • Spring P, Wenk C, Dawson KA, Newman KE (2000) The effects of dietary mannan oligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poult Sci 79:205–211

    Article  CAS  PubMed  Google Scholar 

  • Staykov Y, Spring P, Denev SA (2005) Influence of dietary Bio-Mos® on growth, survival and immune status of rainbow trout (Salmo gairdneri irideus G.) and common carp (Cyprinus carpio L.). In: Lyons TP, Jackues K (eds) Nutritional biotechnology in the feed and food industries. Nottingham University Press, Nottingham, pp 333–343

    Google Scholar 

  • Staykov Y, Spring P, Denev S, Sweetman J (2007) Effect of a mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquac Int 15:153–161

    Article  CAS  Google Scholar 

  • Sweetman JW, Torrecillas S, Dimitroglou A, Rider S, Davies SJ, Izquierdo MS (2010) Enhancing the natural defences and barrier protection of aquaculture species. Aquac Res 41:345–355

    Article  Google Scholar 

  • Terova G, Forchino A, Rimoldi S, Brambilla F, Antonini M, Saroglia M (2009) Bio-Mos®: an effective inducer of dicentracin gene expression in European sea bass (Dicentrarchus labrax). Comp Biochem Phys B 153:372–377

    Article  Google Scholar 

  • Thomke S, Elwinger K (1998) Growth promotants in feeding pigs and poultry ii; mode of action of antibiotic growth promotants. Annales de Zootechnie 47:153–167

    Article  CAS  Google Scholar 

  • Torrecillas S, Makol A, Caballero MJ, Montero D, Robaina L, Real F (2007) Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish Shellfish Immunol 23:969–981

    Article  CAS  PubMed  Google Scholar 

  • Torrecillas S, Makol A, Caballero MJ, Montero D, Gines R, Sweetman J, Izquierdo M (2011) Improve feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquac Nutr 17:223–233

    Article  CAS  Google Scholar 

  • Valancony H, Humbert F, Rukelibuga J, Bougon M, Balaine L, Lalande F (2001) Comparison of some substitutes for antibiotic additives in diets for turkey poults: effects on production and on resistance to salmonella colonization. Sci Tech Avicoles 35:25–34

    Google Scholar 

  • Van Hai N, Fotedar R (2009) Comparison of the effects of the prebiotics (Bio-Mos® and β-1,3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture 289:310–316

    Article  Google Scholar 

  • Vernazza CL, Gibson GR, Rastall RA (2005) In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohydr Polym 60:539–545

    Article  CAS  Google Scholar 

  • Wang CF, **e SQ, Zhu XM, Lei W, Yang YX, Liu JK (2006a) Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pseudobagrus fulvidraco larvae. Aquaculture 254:554–562

    Article  CAS  Google Scholar 

  • Wang WH, Wang JQ, Cheng X, Liu GZ, Li WK, Luo XN, Li JW (2006b) Effects of dietary vitamin C levels and sources on growth and immunity of juvenile yellow catfish Pelteobagrus fulvidraco (Richardson). J Fish Sci China 13:951–958 China

    CAS  Google Scholar 

  • Xu ZR, Hu CH, **a MS, Zhan XA, Wang MQ (2003) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 82:1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Xu BH, Wang YB, Li JR, Lin Q (2009a) Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucial carp (Carassius auratus gibelio). Fish Physiol Biochem 35:351–357

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chao YL, Wan QB (2009b) Health benefit application of functional oligosaccharides. Carbohydr Polym 77:435–441

    Article  CAS  Google Scholar 

  • Zheng KK, Zhu XM, Han D, Yang YX, Lei W, **e SQ (2010) Effects of dietary lipid level on growth and lipoprotein lipase gene expression in Pelteobagrus vachelli. Acta Hydrobiol Sin 34:815–821

    Article  CAS  Google Scholar 

  • Zhou XQ, Li YL (2004) The effects of Bio-Mos on intestinal microflora and immune function of juvenile Jian carp (Cyprinus carpio var. Jian). In: Nutritional biotechnology in the feed and food industries: Proceedings of Alltech’s 20th annual symposium (Suppl. 1-Abstracts of posters presented), Lexington, KY, USA

Download references

Acknowledgments

This work was jointly supported by the Fundamental Research Funds for the Central Universities (2013PY070) and Key Technologies R&D Program of China (Nos. 2012BAD25B05, 2012BAD25B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-xuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Zx., Yu, Ym., Chen, X. et al. Effect of prebiotic konjac mannanoligosaccharide on growth performances, intestinal microflora, and digestive enzyme activities in yellow catfish, Pelteobagrus fulvidraco . Fish Physiol Biochem 40, 763–771 (2014). https://doi.org/10.1007/s10695-013-9883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9883-6

Keywords

Navigation