Log in

Corner-cube retro-reflector instrument for advanced lunar laser ranging

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Lunar laser ranging (LLR) has made major contributions to our understanding of the Moon’s internal structure and the dynamics of the Earth–Moon system. Because of the recent improvements of the ground-based laser ranging facilities, the present LLR measurement accuracy is limited by the retro-reflectors currently on the lunar surface, which are arrays of small corner-cubes. Because of lunar librations, the surfaces of these arrays do not, in general, point directly at the Earth. This effect results in a spread of arrival times, because each cube that comprises the retroreflector is at a slightly different distance from the Earth, leading to the reduced ranging accuracy. Thus, a single, wide aperture corner-cube could have a clear advantage. In addition, after nearly four decades of successful operations the retro-reflectors arrays currently on the Moon started to show performance degradation; as a result, they yield still useful, but much weaker return signals. Thus, fresh and bright instruments on the lunar surface are needed to continue precision LLR measurements. We have developed a new retro-reflector design to enable advanced LLR operations. It is based on a single, hollow corner cube with a large aperture for which preliminary thermal, mechanical, and optical design and analysis have been performed. The new instrument will be able to reach an Earth–Moon range precision of 1-mm in a single pulse while being subjected to significant thermal variations present on the lunar surface, and will have low mass to allow robotic deployment. Here we report on our design results and instrument development effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Note that the hexagonal design yields 6 fold symmetry rather than the 4 fold of the Apollo 11 design.

  2. For details on thermal analysis package I-DEAS TMG, see http://www.mayahtt.com/.

  3. CHEXA is a six-sided solid element with eight or twenty grid points.

  4. CPENTA is a five-sided solid element with six or fifteen grid points.

  5. For details on finite element analysis package NX NASTRAN, see http://www.plm.automation.siemens.com/en_us/products/nx/nx7/index.shtml.

  6. See details on ZYGO interferometer at http://www.zygo.com/.

  7. http://www.russianspaceweb.com/luna_glob.html

References

  1. Bender, P.L., Currie, D.G., Dicke, R.H., Eckhardt, D.H., Faller, J.E., Kaula, W.M., Mulholland, J.D., Plotkin, H.H., Poultney, S.K., Silverberg, E.C., Wilkinson, D.T., Williams, J.G., Alley, C.O.: The Lunar Laser Ranging Experiment.: Science 182, 229–238 (1973). doi:10.1126/science.182.4109.229

    Article  ADS  Google Scholar 

  2. Williams, J.G., Turyshev, S.G., Boggs, D.H.: Lunar laser ranging tests of the equivalence principle with the earth and moon.: Int. J. Mod. Phys. D 18, 1129–1175 (2009)

    Article  ADS  MATH  Google Scholar 

  3. Faller, J.E., Alley, C.O., Bender, P.L., Currie, D.G., Dicke, R.H., Kaula, W.M., MacDonald, G.J.F., Mulholland, J.D., Plotkin, H.H., Silverberg, E.C., Wilkinson, D.T.: Laser Ranging Retroreflector. In: Apollo 14: preliminary science report, Vol. 272, pp. 215–220 (1971)

  4. Faller, J.E.: The Apollo retroreflector arrays and a new multilensed receiver telescope. In: Bowhill, S.A., Jaffe, L.D., Rycroft, M.J. (eds.) Space Research, pp. 235–246 (1972)

  5. Faller, J.E., Alley, C.O., Bender, P.L., Currie, D.G., Dicke, R.H., Kaula, W.M., MacDonald, G.J.F., Mulholland, J.D., Plotkin, H.H., Silverberg, E.C., Wilkinson, D.T.: Laser Ranging Retroreflector, Vol. 289 (1972)

  6. Fournet, M.: Le reflecteur laser de Lunokhod.. In: Bowhill, S.A., Jaffe, L.D., Rycroft, M.J. (eds.) In: Space Research, pp. 261–277 (1972)

  7. Williams, J.G., Newhall, X.X., Dickey, J.O.: Lunar moments, tides, orientation, and coordinate frames.: Phys. Rev. D 53, 6730–6739 (1996). doi:10.1103/PhysRevD.53.6730

    Article  ADS  Google Scholar 

  8. Williams, J.G., Newhall, X.X., Dickey, J.O. : Planet. Space Sci. 44, 1077–1080 (1996). doi:10.1016/0032-0633(95)00154-9

    Article  ADS  Google Scholar 

  9. Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: Lunar rotational dissipation in solid body and molten core.: J. Geophys. Res. 106, 27933–27968 (2001). doi:10.1029/2000JE001396

    Article  ADS  Google Scholar 

  10. Rambaux, N., Williams, J.G.: The Moons physical librations and determination of their free modes.: Cell. Mech. Dyn. Astron. 109, 85–100 (2011). doi:10.1007/s10569-010-9314-2

    Article  ADS  Google Scholar 

  11. Turyshev, S.G., Williams, J.G., Hemmati, H., Folkner, W.M.: New Laser-Ranging Instruments for Science Investigations Of, On, and From the Moon.: LPI Contrib. 1415, 2134–+ (2008)

    ADS  Google Scholar 

  12. Alley, C.O., Bender, P.L., Chang, R.F., Currie, D.G., Dicke, R.H., Faller, J.E., Kaula, W.M., MacDonald, G.J.F., Mulholland, J.D., Plotkin, H.H., Poultney, S.K., Wilkinson, D.T., Winer, I., Carrion, W., Johnson, T., Spadin, P., Robinson, L., Wampler, E.J., Wieber, D., Silverberg, E., Steggerda, C., Mullendore, J., Rayner, J., Williams, W., Warner, B., Richardson, H., Bopp, B.: Laser Ranging Retroreflector.: NASA Spec. Publ. 214, 163–182 (1969)

    ADS  Google Scholar 

  13. Samain, E., Mangin, J.F., Veillet, C., Torre, J.M., Fridelance, P., Chabaudie, J.E., Feraudy, D., Glentzlin, M., van Pham, J., Furia, M., Journet, A., Vigouroux, G.: Millimetric Lunar Laser Ranging at OCA (Observatoire de la Cote dAzur). : Astron. Astrophys. Suppl. 130, 235–244 (1998). doi:10.1051/aas:1998227

    Article  ADS  Google Scholar 

  14. Shelus, P., Ries, J.G., Wiant, J.R., Ricklefs, R.L.: McDonald Ranging: 30 Years and Still Going. In: Schilliak, S. (ed.) Proc. 13-th International Workshop on Laser Ranging, 7–11 October 2002, Washington, D.C. http://cddisa.gsfc.nasa.gov/lw13/lw_proceedings.html (2003)

  15. Murphy, T.W. Jr.,Michelson, E.L., Orin, A.E., Adelberger, E.G., Hoyle, C.D., Swanson, H.E., Stubbs, C.W., Battat, J.B.: Apollo: a new push in lunar laser ranging. : Int. J. Mod. Phys. D 16, 2127–2135 (2007). doi:10.1142/S0218271807011589

    Article  ADS  Google Scholar 

  16. Murphy., T.W. Jr., Adelberger, E.G., Battat, J.B.R., Carey, L.N., Hoyle, C.D., Leblanc, P., Michelsen, E.L., Nordtvedt, K., Orin, A.E., Strasburg, J.D., Stubbs, C.W., Swanson, H.E., Williams, E.: The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections.: Publ. Astron. Soc. Pac. 120, 20–37 (2008). doi:10.1086/526428

    Article  ADS  Google Scholar 

  17. Williams, J.G., Turyshev, S.G., Murphy, T.W. Jr.: Improving LLR Tests of Gravitational Theory.: Int. J. Mod. Phys. D 13, 567–582 (2004)

    Article  ADS  MATH  Google Scholar 

  18. Currie, D., Dell’Agnello, S., Monache, G.O.D., Murphy, T., Vittori, R., et al.: A lunar laser ranging array for NASAs manned landings, the International Lunar Network and the proposed ASI lunar mission MAGIA. In: Schillak, S. (ed.) Proc. of 16th Int. Workshop on Laser Ranging, SLR—The Next Generation, pp. 277–283. Poznan, Poland (2009)

  19. Currie, D., Dell’Agnello, S., Monache, G.O.D.: A Lunar Laser Ranging Retroreflector Array for the 21st Century.: Acta Astronaut. 68(7–8), 667 (2011)

    Article  ADS  Google Scholar 

  20. Scheffer, L.K.: Better Lunar Ranges with Fewer Photons - Resolving the Lunar Retro-reflectors. ar**v: gr-qc/0504009 (2009)

  21. Murphy, T.W. Jr., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., McMillan, R.J., Michelsen, F.L., Stubbs, C.W., Swanson, H.E.:.: APOLLO: two years of science data. In: Schilliak, S. (ed.) Proc. 16-th Int. Workshop on Laser Ranging, pp. 264–269. Poznan, Poland, 12–17 October 2008. http://cddis.gsfc.nasa.gov/lw16/, pp. 264–269 (2009)

  22. Murphy, T.W. Jr., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., McMillan, R.J., Michelsen, E.L., Samad, R.L., Stubbs, C.W., Swanson, H.E.: Long-term degradation of optical devices on the Moon.: Icarus 208, 31–35 (2010). doi:10.1016/j.icarus.2010.02.015

    Google Scholar 

  23. Murphy, T.W. Jr., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., Johnson, N.H., McMillan, R.J., Michelsen, E.L., Stubbs, C.W., Swanson, H.E.: Laser ranging to the lost Lunokhod 1 reflector. : Icarus 211, 1103–1108 (2011). doi:10.1016/j.icarus.2010.11.010

    Article  ADS  Google Scholar 

  24. Chang, R.F., Alley, C.O., Currie, D.G., Faller, J.E. In: Bowhill, S.A., Jaffe, L.D., Rycroft, M.J. (eds.) Space Research, pp. 247–259 (1972)

  25. Arnold, D.: Method of calculating retroreflector - array transfer functions. : Smithsonian Astrophys. Obs. Spec. Rep. 382, 1 (2002)

    Google Scholar 

  26. Otsubo, T., Kunimori, H., Noda, H., Hanada, H.: Simulation of optical response of retroreflectors for future lunar laser ranging. : Adv. Space Res. 45, 733–740 (2010). doi:10.1016/j.asr.2009.12.003

    Article  ADS  Google Scholar 

  27. Arnold, D.: Cross section of the Apollo lunar retroreflector arrays. : Smithsonian Astrophys. Obs. Spec. Rep. 382, 1 (2004). http://ilrs.gsfc.nasa.gov/docs/apollo_arrays.pdf

    Google Scholar 

  28. Dutta, K., Benson, R.S.: Performance modeling of optical metrology systems. In: Shao, M. (ed.) SPIE Conference Series, vol. 4852, pp. 839–848. doi:10.1117/12.460878 (2003)

  29. Neal, C.R., Banerdt, B., Jones, M., Elliott, J., Alkalai, L., Turyshev, S.G., Lognonné, P., Kobayashi, N., Grimm, R.E., Spohn, T.,Weber, R.C.: Lunette Science, Instrument Support Team: Lunette: A Dual Lander Mission to the Moon to Explore Early Planetary Differentiation. (2010)

Download references

Acknowledgements

We thank Leon Alkalai, W. Bruce Banerdt, Hamid Hemmati, Michael Shao, and Michael Werner of JPL for their interest, support and encouragement during the work. We also thank David Arnold, Douglas Currie and Thomas W. Murphy Jr. for helpful conversations. The work described in this report was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slava G. Turyshev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turyshev, S.G., Williams, J.G., Folkner, W.M. et al. Corner-cube retro-reflector instrument for advanced lunar laser ranging. Exp Astron 36, 105–135 (2013). https://doi.org/10.1007/s10686-012-9324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-012-9324-z

Keywords

Navigation