Log in

Effects of parasite and historic driven selection on the diversity and structure of a MHC-II gene in a small mammal species (Peromyscus leucopus) undergoing range expansion

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Genetic diversity may decrease from the centre to the margin of a species distribution range due to neutral stochastic processes. Selection may also alter genetic diversity in non-neutral markers, such as genes associated with the immune system. Both neutral processes and selection on the immune system are thus expected to affect the spatial distribution of such markers, but the relative strength of each has been scarcely studied. Here, we compared the diversity of a neutral marker (mitochondrial cytochrome b) and a selected marker (DRB gene from the MHC-II), in eastern-North American populations of white-footed mice (Peromyscus leucopus), a species known for its role of main reservoir of the Lyme disease. We observed distinct phylogeographic patterns with these two markers, which may be the result of selection pressure acting upon the DRB gene. As predicted by the central marginal hypothesis, we observed a loss of neutral genetic diversity toward the margin of the species distribution. A decrease in diversity was also observed for the DRB gene, likely due to genetic drift and positive selection operated by helminth parasites. Such a loss in genetic diversity at the range margin may slow down the ongoing expansion of P. leucopus, by counterbalancing the effect of global warming on the mouse survival at higher latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RI, Hadly EA (2012) Genetic diversity within vertebrate species is greater at lower latitudes. Evol Ecol 27:133–143

    Article  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364(6432):33–39

    Article  CAS  PubMed  Google Scholar 

  • Brussard PF (1984) Geographic patterns and environmental gradients: the central-marginal model in Drosophila revisited. Annu Rev Ecol Syst 15:25–64

    Article  Google Scholar 

  • Chen W, Bei Y, Li H (2015) Genetic variation of the major histocompatibility complex (MHC class II B gene) in the threatened Hume’s pheasant, Syrmaticus humiae. PLoS ONE 10:e0116499

    Article  PubMed  PubMed Central  Google Scholar 

  • Common J, Di W, Davies D, Kelsell D (2004) Further evidence for heterozygote advantage of GJB2 deafness mutations: a link with cell survival. J Med Genet 41:573–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Fiset J, Tessier N, Millien V, Lapointe FJ (2015) Phylogeographic structure of the white-footed mouse and the deer mouse, two lyme disease reservoir hosts in Quebec. PLoS ONE 10:e0144112

    Article  PubMed  PubMed Central  Google Scholar 

  • Froeschke G, Sommer S (2005) MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol Biol Evol 22:1254–1259

    Article  CAS  PubMed  Google Scholar 

  • Gaitan J, Millien V (2016) Stress level, parasite load, and movement pattern in a small mammal reservoir host for Lyme disease. Can J Zool 94:565–573

    Article  Google Scholar 

  • Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF (2010) A 454 multiplex sequencing method for rapid and reliable genoty** of highly polymorphic genes in large-scale studies. BMC Genom 11(1):296

    Article  Google Scholar 

  • Gassert F, Schulte U, Husemann M, Ulrich W, Rödder D, Hochkirch A, Engel E, Meyer J, Habel JC, Parmakelis A (2013) From southern refugia to the northern range margin: genetic population structure of the common wall lizard, Podarcis muralis. J Biogeogr 40(8):1475–1489

  • Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2012) What is the evidence for heterozygote advantage selection? Trends Ecol Evol 27:698–704

    Article  PubMed  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson M, Primmer CR, Merila J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academy Press, New York

    Book  Google Scholar 

  • Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19:155–162

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    CAS  PubMed  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohyama TI, Omote K, Nishida C, Takenaka T, Saito K, Fujimoto S, Masuda R (2015) Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston’s fish owl. Zool Lett 1:13

    Article  Google Scholar 

  • Lau Q, Jaratlerdsiri W, Griffith JE, Gongora J, Higgins DP (2014) MHC class II diversity of koala (Phascolarctos cinereus) populations across their range. Heredity 113:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledevin R, Millien V (2013) Congruent morphological and genetic differentiation as a signature of range expansion in a fragmented landscape. Ecol Evol 3:4172–4182

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lönn M, Prentice HC (2002) Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos 99:489–498

    Article  Google Scholar 

  • Marrotte RR, Gonzalez A, Millien V (2014) Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Mol Ecol 23:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Mather TN (1993) The dynamics of spirochete transmission between ticks and vertebrates. Ecology and environmental management of Lyme disease. Rutgers University Press, New Brunswick, pp 43–62

    Google Scholar 

  • Meglecz E, Piry S, Desmarais E, Galan M, Gilles A, Guivier E, Pech N, Martin JF (2011) SESAME (SEquence Sorter & AMplicon Explorer): genoty** based on high-throughput multiplex amplicon sequencing. Bioinformatics 27:277–278

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Michaux JR, Magnanou E, Paradis E, Nieberding C, Libois R (2003) Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Mol Ecol 12:685–697

    Article  CAS  PubMed  Google Scholar 

  • Michaux JR, Libois R, Filippucci MG (2005) So close and so different:comparative phylogeography of two small mammal species, theYellownecked fieldmouse (Apodemus flavicollis) and the Woodmouse(Apodemus sylvaticus), in the Western Palearctic region. Heredity 94:52–63

    Article  CAS  PubMed  Google Scholar 

  • Mouton A, Mortelliti A, Grill A, Sara M, Kryštufek B, Juškaitis R, Latinne A, Amori G, Randi E, Büchner S, Schulz B, Ehlers S, Lang J, Adamik P, Verbeylen G, Dorenbosch M, Trout R, Elmeros M, Aloise G, Mazzoti S, Matur F, Poitevin F, Michaux JR (2017) Evolutionary history and species delimitations: a case study of the hazel dormouse, Muscardinus avellanarius. Conserv Genet 18(1):181–196

  • Musolf K, Meyer-Lucht Y, Sommer S (2004) Evolution of MHC-DRB class II polymorphism in the genus Apodemus and a comparison of DRB sequences within the family Muridae (Mammalia: Rodentia). Immunogenetics 56:420–426

    Article  CAS  PubMed  Google Scholar 

  • Myers P, Lundrigan BL, Hoffman SMG, Haraminac AP, Seto SH (2009) Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Glob Change Biol 15:1434–1454

    Article  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  PubMed  Google Scholar 

  • Oliver MK, Lambin X, Cornulier T, Piertney SB (2009) Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations. Mol Ecol 18:80–92

    CAS  PubMed  Google Scholar 

  • Ostfeld RS (2011) Lyme disease: the ecology of a complex system. Oxford University Press, Oxford, p 216

    Google Scholar 

  • Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74

    Article  CAS  PubMed  Google Scholar 

  • Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 99:11260–11264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips BL, Kelehear C, Pizzatto L, Brown GP, Barton D, Shine R (2010) Parasites and pathogens lag behind their host during periods of host range advance. Ecology 91:872–881

    Article  PubMed  Google Scholar 

  • Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD (2016) Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev. doi:10.1111/brv.12313

    PubMed  Google Scholar 

  • Prakash S, Lewontin RC, Hubby JL (1969) A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura. Genetics 61:841–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinnell RJ, Kennedy LJ, Barnes A, Courtenay O, Dye C, Garcez LM, Shaw MA, Carter SD, Thomson W, Ollier WE (2003) Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics 55:23–28

    CAS  PubMed  Google Scholar 

  • Rogic A, Tessier N, Legendre P, Lapointe FJ, Millien V (2013) Genetic structure of the white-footed mouse in the context of the emergence of Lyme disease in southern Quebec. Ecol Evol 3:2075–2088

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowe KC, Heske EJ, Paige KN (2006) Comparative phylogeography of eastern chipmunks and white-footed mice in relation to the individualistic nature of species. Mol Ecol 15:4003–4020

    Article  CAS  PubMed  Google Scholar 

  • Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V (2013) Poleward expansion of the white-footed mouse Peromyscus leucopus under climate change: implications for the spread of Lyme disease. PLoS ONE 8:e80724

    Article  PubMed  PubMed Central  Google Scholar 

  • Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450

    Article  CAS  PubMed  Google Scholar 

  • Schroeder SA, Gaughan DM, Swift M (1995) Protection against bronchial asthma by CFTR [Delta]F508 mutation: a heterozygote advantage in cystic fibrosis. Nat Med 1:703–705

    Article  CAS  PubMed  Google Scholar 

  • Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, Koffi JK, Lapointe F-J, Leighton PA, Lindsay LR, Logan T, Milord F, Ogden NH, Rogic A, Roy-Dufresne E, Suter D, Tessier N, Millien V (2014) Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol Appl 7:750–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16. doi:10.1186/1742-9994-2-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B Biol Sci 277(1684):979–988

    Article  CAS  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S (2011) Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 7:e1002343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worley K, Collet J, Spurgin LG, Cornwallis C, Pizzari T, Richardson DS (2010) MHC heterozygosity and survival in red junglefowl. Mol Ecol 19:3064–3075

    Article  PubMed  Google Scholar 

  • Zeisset I, Beebee TJ (2014) Drift rather than selection dominates MHC class II allelic diversity patterns at the biogeographical range scale in natterjack toads Bufo calamita. PLoS ONE 9:e100176

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, He H (2013) Parasite-mediated selection of major histocompatibility complex variability in wild brandt’s voles (Lasiopodomys brandtii) from Inner Mongolia, China. BMC Evol Biol 13:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Smithsonian National Museum of Natural History and the Harvard Museum of Natural History for the loan of some tissue samples. We thank S. Leo, S. Turney, field assistants and land owners. Computational resources were provided by the CBGP HPC computational platform, and by the Consortium des Équipements de Calcul Intensif (CÉCI) funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. This work was supported by Belgian FRS-FNRS (Fonds de la Recherche Scientifique) fellowship to AA and to JRM and by financial grants from the Belgian FRS-FNRS (‘‘credits pour brefs séjours à l’étranger’’) to AA and JRM, and from the “Patrimoine de l’université de Liège” to AA. VM is supported by a NSERC DG Grant (RGPIN/341918-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. André.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, A., Millien, V., Galan, M. et al. Effects of parasite and historic driven selection on the diversity and structure of a MHC-II gene in a small mammal species (Peromyscus leucopus) undergoing range expansion. Evol Ecol 31, 785–801 (2017). https://doi.org/10.1007/s10682-017-9898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-017-9898-z

Keywords

Navigation