Log in

Identification of transposable element markers associated with yield and quality traits from an association panel of independent mutants in peanut (Arachis hypogaea L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

To identify marker–trait associations (MTAs) for yield and quality traits in peanut, genic and nongenic Arachis hypogaea transposable element (AhTE) markers were employed in a population consisting of independent mutants from several parents. The population was field-evaluated during the rainy seasons of 2014 and 2015, and genotyped with 110 AhTE markers to check the polymorphisms for AhMITE1 transposition. The gene diversity index ranged from 0.00 to 0.50 with average of 0.35, indicating low to moderate genetic diversity in the population. Diversity analysis indicated the grou** of mutants derived from each parent in respective subgroups. Marker–trait association analysis for 110 markers and 40 traits resulted in 132 highly significant MTAs, represented by 58 AhTE markers for 39 traits. Nutritional traits recorded the highest number of MTAs (38), followed by agronomic traits (35), productivity traits (31), foliar disease resistance (23), and taxonomic traits (5). Seventeen MTAs with phenotypic variance explained (PVE) value above 50 % were observed for resistance to late leaf spot (LLS) and rust, plant height, and pod width. The genic and nongenic AhTE markers associated with the above traits were analyzed for their genomic location and functional annotation so that the significance of these loci can be analyzed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Badigannavar A, Murty G (2007) Genetic enhancement of groundnut through gamma ray induced mutagenesis. Plant Mutat Rep 1(3):16–21

    Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Do Kim K, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  • Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan AW, Zhu F, Zhang X, Pan L, Pierce GJ, Zhou G, Krishnamohan KA, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang GQ, Sharma S, Chen N, Liu H, Janila P, Wang M, Wang T, Sun J, Li X, Li C, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Liu ZJ, Paterson AH, Wang S, Liang X, Varshney RK, Yu S (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci 113:6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Wu C, Holbrook C, Tillman B, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117

    Article  CAS  Google Scholar 

  • Clevenger J, Chu Y, Scheffler B, Ozias-Akins P (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01446

    PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Gowda MVC, Nadaf HL, Sheshagiri R (1996) The role of mutations in intraspecific differentiation of groundnut (Arachis hypogaea L.). Euphytica 90:105–113

    Google Scholar 

  • Gowda MVC, Motagi BN, Sheshagiri R, Naidu GK, Rajendraprasad MN (2002) Mutant 28-2: a bold-seeded disease and pest resistant groundnut genotype for Karnataka, India. Int Arachis News Lett 22:32–34

    Google Scholar 

  • Gowda MVC, Bhat RS, Motagi BN, Sujay V, Kumari V, Bhat S (2010) Association of high-frequency origin of late leaf spot resistant mutants with AhMITE1 transposition in peanut. Plant Breed 129:567–569

    CAS  Google Scholar 

  • Gowda MVC, Bhat RS, Sujay V, Kusuma P, Bhat S, Kumari V, Varshney RK (2011) Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.). Plant Syst Evol 291:153–158

    Article  Google Scholar 

  • Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Lingaraju S, Patil PV, Nadaf HL, Gowda MVC, Bhat RS (2017) Map** of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS ONE. https://doi.org/10.1371/journal.pone.0186113

    PubMed  PubMed Central  Google Scholar 

  • IBPGR/ICRISAT (1992) Descriptors for Groundnut, International Board of Plant Genetic Resources and International Crops Research Institute for the Semi-Arid Tropics, Rome, Italy and Patancheru, Andhra Pradesh, India

  • Isleib T, Wilson R, Novitzky W (2006) Partial dominance, pleiotropism, and epistasis in the inheritance of the high-oleate trait in peanut. Crop Sci 46:1331–1335

    Article  CAS  Google Scholar 

  • Jiang H-F, **ao-** R, Zhang X-J, Huang J-Q, Yong L, Li-Ying Y, Bo-Shou L, Upadhyaya HD, Holbrook CC (2010) Comparison of genetic diversity based on SSR markers between peanut mini core collections from China and ICRISAT. Acta Agron Sin 36:1084–1091

    CAS  Google Scholar 

  • Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263:796–805

    Article  CAS  PubMed  Google Scholar 

  • Khedikar Y, Gowda MVC, Sarvamangala C, Patgar K, Upadhyaya HD, Varshney R (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolekar RM, Sujay V, Shirasawa K, Sukruth M, Khedikar YP, Gowda MVC, Pandey MK, Varshney RK, Bhat RS (2016) QTL map** for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica 209:147–156

    Article  CAS  Google Scholar 

  • Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Sci 47:1718–1727

    Article  CAS  Google Scholar 

  • Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landfort WR, Sowell JM, Corely WL (1965) Catalogue of Peanuts, USDA

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted–repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29:1005–1017

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Liao B, Pandey MK, Varshney RK, Guo B, Jiang X, Liu F, Jiang H (2017) Co-localization of major quantitative trait loci for pod size and weight to a 3.7 CM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics 18:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Buhariwalla KK, Buhariwalla HK, Crouch JH (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459–460

    Article  Google Scholar 

  • May BP, Martienssen RA (2003) Transposon mutagenesis in the study of plant development. Crit Rev Plant Sci 22:1–35

    Article  CAS  Google Scholar 

  • Misra JB, Mathur RS, Bhatt DM (2000) Near infrared transmittance spectroscopy: a potential tool for non destructive determination of oil content in groundnuts. J Sci Food Agric 80:237–240

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM, Kale DM, Murty GSS (2007) Induction of genetic variability in a disease-resistant groundnut breeding line. BARC News Lett 285:237

    Google Scholar 

  • Mondal S, Hande P, Badigannavar AM (2013) Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. J Phytopathol 162:548–552

    Article  Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshaye MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Shivali S, Hamidou F, Anil Kumar V, Khera P, Bhat RS, Khan Amir W, Sube S, Hongjie L, Emmanuel M, Nadaf HL, Mukri G, Liang X, Jackson S, Varshney RK (2014) Genomewide association studies for 50 agronomic traits in peanut using the reference set comprising 300 genotypes from 48 countries of semi-arid tropics of the world. PLoS ONE 9:e105228

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Wang H, Khera P, Vishwakarma MK, Kale SM, Culbreath AK, Holbrook CC, Wang X, Varshney RK, Guo B (2017) Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci 8:25

    PubMed  PubMed Central  Google Scholar 

  • Panford JA, Deman JM (1990) Determination of oil content of seeds by NIR: influence of fatty acid composition on wavelength selection. J Am Oil Chem Soc 67:473–482

    Article  CAS  Google Scholar 

  • Pasupuleti J, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, Manohar SS, Nagesh P, Vishwakarma MK, Mishra GP (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

    Article  Google Scholar 

  • Patil SH (1966) Mutations induced in groundnut by X rays. Indian J Genet Plant Breed 26A:334–348

    Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin software. http://darwin.cirad.fr/darwin. Accessed 17 Nov 2017

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Jiang H, Yan Z, Chen Y, Zhou X, Huang L, Lei Y, Huang J, Yan L, Qi Y (2014) Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS ONE 9:e88091

    Article  PubMed  PubMed Central  Google Scholar 

  • Roos J, Bejai S, Mozūraitis R, Dixelius C (2015) Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis. Plant J 81:572–585

    Article  CAS  PubMed  Google Scholar 

  • Roy NS, Choi J-Y, Lee S-I, Kim N-S (2015) Marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes Genom 37:141–151

    Article  CAS  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122:49–59

    Article  Google Scholar 

  • Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012a) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S (2012b) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbarao PV, Subramanyam P, Reddy PM (1990) A modified nine points diseases scale for assessment of rust and late leaf spot of groundnut. Second International Congress of French Phytopathological Society, French Phyto-Pathological Society, Montpellier, p 25

    Google Scholar 

  • Subrahmanyam P, McDonald D, Waliar F, Reddy LJ, Nigam SN, Gibbons RW, Rao VR, Singh AK, Pande S, Reddy PM, Rao PVS (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. ICRISAT, Patancheru

    Google Scholar 

  • Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK (2012) QTL analysis and construction of consensus genetic map for foliar disease resistance based on two RIL populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:773–788

    Article  CAS  PubMed  Google Scholar 

  • USDA (2017) Foreign Agricultural Service

  • Varshney RK, Pandey MK, Pasupuleti J, Nigam SN, Sudini H, Gowda MVC, Sriswathi M, Radhakrishan T, Manohar SS, Patne N (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Walden R (2002) T-DNA tagging in a genomics era. Crit Rev Plant Sci 21:143–165

    Article  CAS  Google Scholar 

  • Wang Y, Zhang X, Zhao Y, Prakash C, He G, Yin D (2015) Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut. Genome 58:375–383

    Article  CAS  PubMed  Google Scholar 

  • Yeri SB, Bhat RS (2016) Development of late leaf spot and rust resistant backcross lines in JL 24 variety of groundnut (Arachis hypogaea L.). Electron J Plant Breed 7:37–41

    Article  Google Scholar 

  • Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D (2017) Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci 8:1611

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, **a Y, Liao J, Liu K, Li Q, Dong Y, Ren X, Chen Y, Huang L, Liao B (2016) Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (Arachis hypogaea L.) under multi-environments. PLoS ONE 11:e0166873

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support received from BRNS project (no. 2013/35/12/BRNS), and the DST-JSPS Bilateral Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Bhat.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hake, A.A., Shirasawa, K., Yadawad, A. et al. Identification of transposable element markers associated with yield and quality traits from an association panel of independent mutants in peanut (Arachis hypogaea L.). Euphytica 213, 283 (2017). https://doi.org/10.1007/s10681-017-2070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2070-6

Keywords

Navigation