Log in

Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The objective of this study was to identify molecular markers linked to fruit-related traits in the tomato subjected to high temperatures. In total, 160 F2 plants derived from a cross between a heat-tolerant breeding line, CL5915-93D4-1-0-3 (Solanum esculentum), and a heat-sensitive wild accession, L4422 (S. pimpinellifolium), were grown in a greenhouse. Six traits including fruit number, fruit weight, brix, seed number, fruit setting, and flower number were scored. The distributions of fruit number, fruit set, flower number, and seed number were skewed towards heat susceptibility which is known to be characteristic of L4422. Polymorphic bands were generated by PCR-derived methods of RAPD, ISSR and AFLP Polymorphism, the segregation ratio, and distribution over the genome of the above 3 markers were compared. Ten linkage groups, ranging 20.6–151.6 cM in size, were constructed with 62 informative markers spanning a total of 776.3 cM. Fruit-related quantitative trait loci (QTLs) were non-randomly distributed in the tomato genome. For the 6 traits investigated, 21 QTLs were dispersed on linkage groups 2–5. The genetic effects of the various QTLs were differently exhibited, in our study we have respectively found from 10.5% to 30.2% of the variation explained by the QTL for flower number (FRN4) and brix (BX2). Thirteen QTL-mapped markers were unique to 1 trait, and 4 markers were linked to more than 1 trait. Among them, QTLs linked to the I868-470 marker had effects on fruit weight and brix, and a significant positive correlation between these 2 traits was noted (r = 0.35, P < 0.05). Thus, the I868-470 marker may have the potential for simultaneous selection of high fruit weight and brix. These markers also allowed us to align genome linkage maps across distantly related species and to reveal the co-localization between these QTLs and major genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AVRDC (1993) Asian Vegetable Research and Development Center report. AVRDC, Taiwan

  • AVRDC (1997) Asian Vegetable Research and Development Center report. AVRDC, Taiwan

  • Bai Y, Feng X, Van der Hulst R, Lindhout P (2004) A set of simple PCR markers converted from sequence specific RFLP markers on tomato chromosomes 9 to 12. Mol Breed 13:281–287

    Article  CAS  Google Scholar 

  • Basten CB, Weir BS, Zeng ZS (2002) QTL cartographer: a reference manual and tutorial for QTL map**. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × Lycopersicon hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    CAS  PubMed  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Zamir D, Tanksley SD (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Causse M, Duffe P, Buret M (2004) A genetic map of candidate genes and QTL involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

    Article  CAS  Google Scholar 

  • Chen KY, Tanksley SD (2004) High resolution map** and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, Clair DA, Beelaman RB (1999) Map** of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular map** of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    Article  CAS  Google Scholar 

  • de Vicent MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tmato cross. Genetics 134:585–596

    Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed  Google Scholar 

  • Doganlar S, Frary A, Ku HM, Tanksley SD (2002) Map** quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine map** of yield-associated QTLs. Genetics 141:1147–1162

    CAS  PubMed  Google Scholar 

  • Foolad MR (2007) Genome map** and molecular breeding of tomato. Int J Plant Genome 2007:64358

    Google Scholar 

  • Fray A, Nesbitt TC, Grandillo S, Knaap E, Liu J, Elber R, Alpert KB, Tanksley SD (2000) fe2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Fulton TM, Beckbunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild specifics. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Georgelis N, Scott JW, Baldwin EA (2004) Relationship of tomato fruit sugar concentration with physical and chemical traits and linkage of RAPD markers. J Am Soc Hort Sci 129:839–845

    CAS  Google Scholar 

  • Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicum esculentum × Lycopersicum cheesmanii cross. Theor Appl Genet 90:925–932

    Article  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Gur A, Semel Y, Cahaner A, Zamir D (2004) Real time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci 9:33–39

    Article  Google Scholar 

  • Haanstra JP, Wye C, Verbakel H, Meijer DF, Van Den BP, Odinot P, Van Heusden AP, Tanksley SD, Lindhout P, Peleman J (1999) An integrated high density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic map** of quantitative trait loci. Genetics 140:1111–1127

    CAS  PubMed  Google Scholar 

  • Knaap EV, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147

    PubMed  Google Scholar 

  • Kosambi DD (1994) The estimation of map distance from recombination values. Ann Eugenet 12:172–175

    Google Scholar 

  • Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349

    Article  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genome 1:174–181

    Article  CAS  Google Scholar 

  • Lecomte L, Duffe P, Buret M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Lo HF, Lee SP, Kuo C, Chen TC, Yeh WL (2006) RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas 143:142–154

    Article  PubMed  Google Scholar 

  • Lippmana Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    Google Scholar 

  • Lohar DP, Peet WE (1998) Floral characteristics of heat-tolerance and heat-sensitive tomato cultivars at high temperature. HortScience 73:53–60

    Google Scholar 

  • Marin TB, Moyseeno JB, Monforte AJ, Van Der KE (2007) Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot 58:1339–1349

    Article  Google Scholar 

  • Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770

    Article  CAS  PubMed  Google Scholar 

  • Mijalski T, Harder A, Halder T, Kersten M, Horsch M (2005) Identification of coexpressed gene clusters in a comparative analysis of transcriptome and proteome in mouse tissues. Proc Natl Acad Sci USA 102:8621–8626

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm ultilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Nesbitt TN, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    CAS  PubMed  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127:181–197

    CAS  PubMed  Google Scholar 

  • Ruiz JJ, García-Martínez S, Picó B, Gao M, Quiros CF (2005) Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers. J Am Soc Hort Sci 130:88–94

    CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40

    Article  CAS  PubMed  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Map** QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Zhang L, Niño-Liu D, Ashrafi H, Foolad MR (2008) A Solanum lycopersicum × Solanum pimpinellifolium linkage map of tomato displaying genomic locations of R-genes, RGAs, and candidate resistance/defense-response ESTs. Int J Plant Genome 2008:926090

    Google Scholar 

  • Stevens MA (1986) Inheritance of tomato fruit quality components. Plant Breed Rev 4:273–311

    Google Scholar 

  • Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and map** of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Let 7:583–597

    CAS  Google Scholar 

  • Swamy MBP, Sarla M (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotech Adv 26:106–120

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Map** polygenes. Ann Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis, a method for the simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Riider MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Grandillo S, Fultom TM, Zamir D, Eshed Y, Petiard V (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Villalta I, Bernet GP, Carbonell EA, Asins MI (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    Article  CAS  PubMed  Google Scholar 

  • Villareal RL, Lai SH, Wong SH (1978) Screening for heat tolerance in the genus Lycopersicon. HortScience 13:479–481

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijers A, Pot J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Bai X, Kabelka E (2004) Discovery of singly nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34

    Article  CAS  Google Scholar 

  • Yates HE, Frary A, Doganlar S (2004) Comparative fine map** of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135:283–296

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision map** of quantitative trait loci. Genetics 136:1468–1475

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. L. Lo, Z. Y. Chang, and numerous students for assistance in the greenhouse at Chinese Culture University. We also thank anonymous reviewers for their comments on the revision of this article. This work was supported in part by grants from the Council of Agriculture (93-AS-1.3.1-Z2), Executive Yuan, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Feng Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, KH., Yeh, WL., Chen, HM. et al. Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica 174, 119–135 (2010). https://doi.org/10.1007/s10681-010-0147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0147-6

Keywords

Navigation