Log in

Performance of Solanum habrochaites LA1777 introgression line hybrids for marketable tomato fruit yield in Asia

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Wild relatives of the cultivated tomato (Solanum lycopersicum L.) are major sources of new genetic diversity for tomato improvement. Introgression lines (IL) are near-isogenic lines homozygous for one or several mapped wild DNA fragments in a common recurrent parent. A set of ILs developed by Cornell University from Solanum habrochaites accession LA1777 and recurrent parent E6203 has been made publicly available through the Tomato Genetics Resource Center of the University of California-Davis. Our objective was to identify LA1777 introgressions with potential to increase the marketable fruit yield of tomato grown in the tropics. A subset of ILs were each crossed to CLN2498E (resistant to bacterial wilt and some begomoviruses) to create IL hybrids (ILH). ILH, IL recurrent parent E6203, CLN2498E, and CLN2498E × E6203 (Hchk) were evaluated in replicated trials in Thailand, India, and Taiwan during two dry seasons. Highly significant effects for marketable fruit yield were detected in Thailand and Taiwan. ILH heterozygous for S. habrochaites segments at the bottom of chromosome 1 yielded about 20% than the Hchk at Thailand and Taiwan. Our results agree with previous results from Cornell University researchers who found a segment of S. habrochaites DNA located between TG158 and TG27 associated with increased total fruit yield in previous trials conducted in upper state New York. Yield improvement due to this S. habrochaites introgression can occur over a wide range of environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IL:

Introgression line

ILH:

Introgression line hybrid

References

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998a) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmaty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1998b) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from L. hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180

    Article  CAS  Google Scholar 

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    Article  PubMed  CAS  Google Scholar 

  • Chetelat RT (2000) TGRC stock list. XII. Introgression lines. Rep Tomato Genet Coop 50:74–77

    Google Scholar 

  • Eshed Y, Abu-Abied M, Saranga Y, Zamir D (1992) Lycopersicon esculentum lines containing small overlap** introgressions from L. pennellii. Theor Appl Genet 83:1027–1034

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine-map** of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine-map** of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Fauquet CM, Maxwell DP, Gronenborn B, Stanley J (2000) Revised proposal for naming geminiviruses. Arch Virol 145:1743–1761

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2006) Agricultural data FAOSTAT. http://faostat.fao.org/faostat/collections?version=ext&hasbulk=0&subset=agriculture. Cited April 2006

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Global Horticulture Assessment (2005) International programs office. College of Agricultural and Environmental Sciences, University of California Davis. p 134

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. John Wiley & Sons. pp328–332

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Hanson PM., Yang R-Y, Wu J, Chen J-T, Ledesma D, Tsou SCS, Lee T-C (2004) Variation for antioxidant activity and antioxidants in tomato. J Am Soc Hort Sci 129:704–711

    CAS  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann Rev Phytopathol 29:65–87

    Article  Google Scholar 

  • Liao TF (2004) Comparing social groups: wald statistics for testing equality among multiple logit models. Intl J Comparative Sociol 25:3–16

    Article  Google Scholar 

  • Momotaz A, Scott JW, Schuster DJ (2005) Searching for silverleaf whitefly and begomovirus resistance genes from Lycopersicon hirsutum accession LA1777. Acta Hort 695:417–422

    Google Scholar 

  • Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene map** and gene discovery. Genome 43:803–813

    Article  PubMed  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000b) Fine map** of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Morales FJ (2001) Conventional breeding for resistance to Bemisia tabaci-transmitted geminiviruses. Crop Protection 20:825–834

    Article  Google Scholar 

  • Pandey B (1994) Hybrid seed controversy in India. Biotech Dev Monitor 19:9–11

    Google Scholar 

  • Peralta I, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from northern Peru. Syst Bot 30:424–434

    Article  Google Scholar 

  • Rick CM (1986) Germplasm resources in the wild tomato species. Acta Hort 190:39–47

    Google Scholar 

  • SAS Institute Inc. (2000) SAS OnlineDoc®, Version 8. Cary, NC, USA

  • Simmonds NW (1993) Introgression and incorporation. Strategies for the use of crop genetic resources. Biol Rev 68:539–562

    Article  Google Scholar 

  • Solanceae Genomics Network (2006) Maps and markers. http://www.sgn.cornell.edu/. Cited October 2006

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Vidavsky F, Czosnek H (1998) Tomato breeding lines resistant and tolerant to tomato leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88:910–914

    Article  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was graciously funded by the Federal Ministry for Economic Cooperation and Development, Germany, Project number 03.7860.4-001.00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Hanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, P.M., Sitathani, K., Sadashiva, A.T. et al. Performance of Solanum habrochaites LA1777 introgression line hybrids for marketable tomato fruit yield in Asia. Euphytica 158, 167–178 (2007). https://doi.org/10.1007/s10681-007-9440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9440-4

Keywords

Navigation