Log in

Status and chemical characteristics of ambient PM2.5 pollutions in China: a review

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The ambient fine particulate matter is a considerable hazard to human health and the surrounding environment of the majority of Chinese cities. This article reviews the status of air pollution, especially PM2.5, in 21 cities of China, on the basis of their status, chemical characteristics, and regulations data collected from the published literature. The observed results show Zhengzhou, Yulin, **an, Qingdao, and Changchun as significantly polluted cities where the annual mean concentration of PM2.5 was noted to be greater than 120 µg m−3. However, some cities such as **amen, Hong Kong, Shenzhen, and **chang reported average annual PM2.5 concentrations less than 40 µg m−3. In general, the results of spatial distribution reported that the cities of the east, north, and northeast China are highly polluted. According to the average mass of PM2.5 in maximum cities of China, the sum of sulfate, nitrate and ammonium (SNA) and organic matter (OM) contributed over 40 and 35%, respectively. The higher amount of SNA and OM in PM2.5 results from heavy traffic or vehicle emission and burning solid fuel utilized in most part of China. A proposed systemic approach to address the PM2.5 in China can improve the quality of ambient atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balachandran, S., Chang, H. H., Pachon, J. E., Holmes, H. A., Mulholland, J. A., & Russell, A. G. (2013). Bayesian-based ensemble source apportionment of PM2.5. Environmental Science and Technology, 47, 13511–13518.

    Article  CAS  Google Scholar 

  • Bove, M. C., Brotto, P., Cassola, F., Cuccia, E., Massabo, D., Mazzino, A., et al. (2014). An integrated PM2.5 source apportionment study: Positive matrix factorization vs. the chemical transport model CAMx. Atmospheric Environment, 94, 274–286.

    Article  CAS  Google Scholar 

  • Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., et al. (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environmental Science and Technology, 46(2), 652–660.

    Article  CAS  Google Scholar 

  • Butler, T. M., Lawrence, M. G., Gurjar, B. R., van Aardenne, J., Schultz, M., & Lelieveld, J. (2008). The representation of emissions from megacities in global emission inventories. Atmospheric Environment, 42(4), 703–719.

    Article  CAS  Google Scholar 

  • Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., et al. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in **’an, China. Atmospheric Chemistry and Physics, 5, 3127–3137.

    Article  CAS  Google Scholar 

  • Cao, J., Xu, H., Xu, Q., Chen, B., & Kan, H. (2012). Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environmental Health Perspectives, 120(3), 373–378.

    Article  CAS  Google Scholar 

  • Chao, C. Y., & Wong, K. K. (2002). Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmospheric Environment, 36(2), 265–277.

    Article  CAS  Google Scholar 

  • Chen, P. L., Wang, T. J., Hu, X., **e, M., Zhuang, B. L., & Li, S. (2015a). A study of chemical mass balance source apportionment of fine particulate matter in Nan**g. Journal of Nan**g University (Natural Science), 51(3), 524–534.

    Google Scholar 

  • Chen, Y., **e, S. D., & Luo, B. (2015b). Composition and pollution characteristics of fine particles in Chengdu during 2012 to 2013. Acta Scientiae Circumstantiae, 1, 3. https://doi.org/10.13671/j.hjkxxb.2015.0501.

    Article  CAS  Google Scholar 

  • Cheng, Z. (2013). Relationship between haze pollution and aerosol properties in the Yangtze River Delta of China. Doctoral dissertation, Tsinghua University.

  • Cheng, S., Lang, J., Zhou, Y., Han, L., Wang, G., & Chen, D. (2013). A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Bei**g. China Atmospheric Environment, 79, 308–316.

    Article  CAS  Google Scholar 

  • Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., et al. (2015). PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96–104.

    Article  CAS  Google Scholar 

  • Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., et al. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environmental International, 89–90, 212–221.

    Article  CAS  Google Scholar 

  • Cheng, S., Yang, L., Zhou, X., Wang, Z., Zhou, Y., Gao, X., et al. (2011). Evaluating PM2.5 ionic components and source apportionment in **an, China from 2004 to 2008 using trajectory statistical methods. Journal of Environmental Monitoring, 13(6), 1662–1671.

    Article  CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Chen, L. A., Ho, S. S. H., Koracin, D., Zielinska, B., et al. (2006). Exposure to PM2.5 and PAHs from the Tong Liang, China Epidemiological Study. Journal of Environmental Science Health Part A: Toxic/Hazardous Substances and Environmental Engineering, 41(4), 517–542.

    Article  CAS  Google Scholar 

  • Dan, M., Zhuang, G., Li, X., Tao, H., & Zhuang, Y. (2004). The characteristics of carbonaceous species and their sources in PM2.5 in Bei**g. Atmospheric Environment, 38, 3443–3452.

    Article  CAS  Google Scholar 

  • Feng, J., Chan, C. K., Fang, M., Hu, M., He, L., & Tang, X. (2005). Impact of meteorology and energy structure on solvent extractable organic compounds of PM2.5 in Bei**g, China. Chemosphere, 61(5), 623–632.

    Article  CAS  Google Scholar 

  • Gao, B., Guo, H., Wang, X. M., Zhao, X. Y., Ling, Z. H., Zhang, Z., et al. (2013). Tracer-based source apportionment of polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China, using positive matrix factorization (PMF). Environmental Science and Pollution Research, 20, 2398–2409.

    Article  CAS  Google Scholar 

  • Gao, J., Tian, H., Cheng, K., Lu, L., Wang, Y., Wu, Y., et al. (2014). Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Bei**g, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmospheric Environment, 99, 257–265.

    Article  CAS  Google Scholar 

  • Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., Xue, L., et al. (2011). Semi-continuous measurement of water-soluble ions in PM2.5 in **an, China: Temporal variations and source apportionments. Atmospheric Environment, 45(33), 6048–6056.

    Article  CAS  Google Scholar 

  • Gautam, S., & Patra, A. K. (2015). Dispersion of particulate matter generated at higher depths in opencast mines. Environmental Technology and Innovation, 3, 11–27.

    Article  Google Scholar 

  • Gautam, S., Patra, A. K., & Kumar, P. (2016a). Occupational exposure to particulate matter in three Indian opencast mines. Air Quality, Atmosphere and Health, 9(2), 143–158.

    Article  CAS  Google Scholar 

  • Gautam, S., Patra, A. K., Sahu, S. P., & Hitch, M. (2016b). Particulate matter pollution in opencast coal mining areas: A threat to human health and environment. International Journal of Mining, Reclamation and Environment. https://doi.org/10.1080/17480930.2016.1218110.

    Article  Google Scholar 

  • Gautam, S., Prasad, N., Patra, A. K., Prusty, B. K., Singh, P., Pipal, A., et al. (2016c). Characterization of PM2.5 generated from opencast coal mining operations: A case study of Sonepur Bazari Opencast Project of India. Environmental Technology and Innovation, 6, 1–10.

    Article  Google Scholar 

  • Geng, N. B., Wang, J., Xu, Y. F., Zhang, W. D., Chen, C., & Zhang, R. Q. (2013). PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment. Particuology, 11, 99–109.

    Article  CAS  Google Scholar 

  • Gu, J. X., Du, S. Y., Han, D. W., Hou, L. J., Yi, J., Xu, J., et al. (2014). Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in **an, China. Air Quality Atmosphere and Health, 7, 251–262.

    Article  CAS  Google Scholar 

  • Guangzhou Environmental Protection Bureau (EPB). http://finance.sina.com.cn/china/dfjj/20150420/061021994918.shtml. Last accessed on 26th July 2015.

  • Gurjar, B. R., Jain, A., Sharma, A., Agarwal, A., Gupta, P., Nagpure, A. S., et al. (2010). Human health risks in megacities due to air pollution. Atmospheric Environment, 44(36), 4606–4613.

    Article  CAS  Google Scholar 

  • Hao, J., & Wang, L. (2005). Improving urban air quality in China: Bei**g case study. Journal of Air Waste and Management, 55, 1298–1305.

    Article  CAS  Google Scholar 

  • Hu, D., & Jiang, J. (2013). A study of smog issues and PM2.5 pollutant control strategies in China. Journal of Environmental Protection, 4, 746–752.

    Article  CAS  Google Scholar 

  • Hu, H., **, Q., & Kavan, P. (2014). A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability, 6, 5820–5838.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., et al. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nan**g, China. Atmospheric Environment, 57, 146–152.

    Article  CAS  Google Scholar 

  • Huang, X. H. H., Bian, Q. J., Louie, P. K. K., & Yu, J. Z. (2014a). Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong. Atmospheric Chemistry and Physics, 14, 9279–9293.

    Article  CAS  Google Scholar 

  • Huang, X. H., Bian, Q. J., Ng, W. M., Louie, P. K., & Yu, J. Z. (2014b). Characterization of PM2.5 Major Components and source investigation in suburban Hong Kong: A one-year monitoring study. Aerosol Air Quality and Research, 14, 237–250.

    Article  CAS  Google Scholar 

  • Huang, W., Cao, J., Tao, Y., Dai, L., Lu, S. E., Hou, B., et al. (2012). Seasonal variation of chemical species associated with short-term mortality effects of PM2.5 in **an, a central city of China. American Journal of Epidemiology. https://doi.org/10.1093/aje/kwr342.

    Article  Google Scholar 

  • Huang, J., Deng, F., Wu, S., Zhao, Y., Shima, M., Guo, B., et al. (2016). Acute effects on pulmonary function in young healthy adults exposed to traffic-related air pollution in semi-closed transport hub in Bei**g. Environmental Health and Preventive Medicine. https://doi.org/10.1007/s12199-016-0531-5.

    Article  Google Scholar 

  • IMPROVE. (2011). Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States, Report V, June 2011. Washington, DC: Interagency Monitoring of Protected Visual Environments. ISSN 0737-5352-87.

  • IPCC. (2013). The fifth assessment report of the intergovernmental panel on climate change. New York, NY, Cambridge.

  • Jia, L. L. (2014). Study on pollution characteristics and source apportionment of atmospheric particles on the northern cold northern cold region. Master Thesis, Harbin Institute of Technology.

  • Jiang, S. Y. N., Yang, F. H., Chan, K. L., & Ning, Z. (2014). Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmospheric Pollution Research, 5, 236–244.

    Article  CAS  Google Scholar 

  • Kan, H., London, S. J., Chen, G., Zhang, Y., Song, G., Zhao, N., et al. (2007). Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environmental International, 33(3), 376–384.

    Article  Google Scholar 

  • Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environmental International, 74, 136–143.

    Article  CAS  Google Scholar 

  • Kumar, P., Pirjola, L., Ketzel, M., & Harrison, R. M. (2013). Nanoparticle emissions from 11 non-vehicle exhaust sources—A review. Atmospheric Environment, 67, 252–277.

    Article  CAS  Google Scholar 

  • Labelle, R., Brand, A., Buteau, S., & Smargiassi, A. (2015). Hospitalizations for respiratory problems and exposure to industrial emissions in children. Environmental Pollution, 4(2), 77–85.

    CAS  Google Scholar 

  • Li, L., An, J. Y., Zhou, M., Yan, R. S., Huang, C., Lu, Q., et al. (2015a). Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode. Atmospheric Environment, 123, 1–15.

    Article  CAS  Google Scholar 

  • Li, Y. Y., Lin, T., Wang, F. W., Ji, T. Y., & Guo, Z. G. (2015b). Seasonal variation of polybrominated diphenyl ethers in PM2.5 aerosols over the East China Sea. Chemosphere, 119, 675–681.

    Article  CAS  Google Scholar 

  • Li, J., Song, Y., Mao, Y., Mao, Z., Wu, Y., Li, M., et al. (2014). Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China’s agricultural regions. Atmospheric Environment, 92, 442–448.

    Article  CAS  Google Scholar 

  • Liang, C. S., Duan, F. K., He, K. B., & Ma, Y. L. (2016). Review on recent progress in observations, source identifications and counter measures of PM2.5. Environmental International, 86, 150–170.

    Article  CAS  Google Scholar 

  • Liu, G., Li, J. H., Wu, D., & Xu, H. (2015a). Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology, 18, 135–143.

    Article  CAS  Google Scholar 

  • Liu, J. W., Li, J., Zhang, Y. L., Liu, D., Ding, P., Shen, C. D., et al. (2014). Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: Contrasting local- and regional-scale haze events. Environmental Science and Technology, 48, 12002–12011.

    Article  CAS  Google Scholar 

  • Liu, D., Li, J., Zhang, Y. L., Xu, Y., Liu, X., Ding, P., et al. (2013). The use of levoglucosan and radiocarbon for source apportionment of PM2.5 carbonaceous aerosols at a background site in East China. Environmental Science and Technology, 47, 10454–10461.

    CAS  Google Scholar 

  • Liu, B. X., Zhang, D. W., Chen, T., Yang, D. Y., Yang, L., Chang, M., et al. (2015b). Analysis of the characteristics and major chemical compositions of PM2.5 in Bei**g. Acta Scientiae Circumstantiae. https://doi.org/10.13671/j.hjkxxb.2015.0131.

    Article  Google Scholar 

  • Masiol, M., Squizzato, S., Rampazzo, G., & Pavoni, B. (2014). Source apportionment of PM2.5 at multiple sites in Venice (Italy): Spatial variability and the role of weather. Atmospheric Environment, 98, 78–88.

    Article  CAS  Google Scholar 

  • Meng, J., Liu, J., Xu, Y., & Tao, S. (2015). Tracing primary PM2.5 emissions via Chinese supply chains. Environmental Research Letters, 10, 054005.

    Article  CAS  Google Scholar 

  • MEPPRC. (2015). National urban ambient air quality daily report. Ministry of Environmental Protection of the People’s Republic of China. http://datacenter.mep.gov.cn/; http://www.gov.cn/xinwen/2015-01/16/content_2805618.htm.

  • Patra, A. K., Gautam, S., & Kumar, P. (2016a). Emissions and human health impact of particulate matter from surface mining operation—A review. Environmental Technology and Innovation, 5, 233–254.

    Article  Google Scholar 

  • Patra, A. K., Gautam, S., Majumdar, S., & Kumar, P. (2016b). Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model. Air Quality, Atmosphere and Health. https://doi.org/10.1007/s11869-015-0369-9.

    Article  Google Scholar 

  • Pui, D. Y. H., Chen, S. C., & Zuo, Z. (2014). PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology, 13, 1–26.

    Article  CAS  Google Scholar 

  • Qin, X., Wang, F., Deng, C., Wang, F., & Yu, G. (2016). Seasonal variation of atmospheric particulate mercury over the East China Sea, an outflow region of anthropogenic pollutants to the open Pacific Ocean. Atmospheric Pollution Research, 7(5), 876–883.

    Article  Google Scholar 

  • Qiu, X., Duan, L., Gao, J., Wang, S., Chai, F., Hu, J., et al. (2016). Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. Journal of Environmental Sciences, 40, 75–83.

    Article  Google Scholar 

  • Salvi, D., Limaye, S., Muralidharan, V., Londhe, J., Madas, S., Juvekar, S., et al. (2016). Indoor particulate matter < 2.5 μm in mean aerodynamic diameter and carbon monoxide levels during the burning of mosquito coils and their association with respiratory health. Chest, 149(2), 459–466.

    Article  Google Scholar 

  • Shanghai Environmental Protection Bureau. (EPB). (2014). Source apportionment of ambient fine particulate matter for Shanghai City. Report.

  • Shi, G. L., Xu, J., Peng, X., Tian, Y. Z., Wang, W., Han, B., et al. (2016). Using a new WALSPMF model to quantify the source contributions to PM2.5 at a harbour site in China. Atmospheric Environment, 126, 66–75.

    Article  CAS  Google Scholar 

  • Smith, K. R., Frumkin, H., Balakrishnan, K., Butler, C. D., Chafe, Z. A., Fairlie, I., et al. (2013). Energy and human health. Annual Review of Public Health, 34, 159–188.

    Article  Google Scholar 

  • Song, J., Guang, W., Li, L., & **ang, R. (2016). Assessment of air quality status in Wuhan, China. Atmosphere, 7(56), 2–9.

    Google Scholar 

  • Song, Y., **e, S., Zhang, Y., Zeng, L., Salmon, L. G., & Zheng, M. (2006). Source apportionment of PM2.5 in Bei**g using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment, 372(1), 278–286.

    Article  CAS  Google Scholar 

  • Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., et al. (2013). Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research, 122, 270–283.

    Article  CAS  Google Scholar 

  • Tian, Y. Z., Shi, G. L., Han, B., Wu, J. H., Zhou, X. Y., Zhou, L. D., et al. (2015). Using an improved source directional apportionment method to quantify the PM(2.5) source contributions from various directions in a megacity in China. Atmospheric Environment, 119, 750–756.

    CAS  Google Scholar 

  • Tsiouri, V., Kakosimos, K., & Kumar, P. (2015). Concentrations, physicochemical characteristics and exposure risks associated with particulate matter in the Middle East Area—A review. Air Quality, Atmosphere and Health, 8, 67–80.

    Article  CAS  Google Scholar 

  • USEPA. (2014). PM2.5 objectives and history. http://www.epa.gov/region4/sesd/pm25/p2.html. Last assessed on 22 Feb 2016.

  • Vedantham, R., Landis, M. S., Olson, D., & Pancras, J. P. (2014). Source identification of PM2.5 in Steubenville, Ohio using a hybrid method for highly time-resolved data. Environmental Science and Technology, 48, 1718–1726.

    Article  CAS  Google Scholar 

  • Vela, A. V., Andrade, M. F., Ynoue, R. Y., & Kumar, P. (2015). Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: A numerical study with the WRF-Chem model. Atmospheric Chemistry and Physics, 15, 14171–14219.

    Google Scholar 

  • Wang, X., Bi, X., Sheng, G., & Fu, J. (2006). Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 119(1), 425–439.

    Article  CAS  Google Scholar 

  • Wang, P., Cao, J. J., Shen, Z. X., Han, Y. M., Lee, S. C., Huang, Y., et al. (2015a). Spatial and seasonal variations of PM2.5 mass and species during 2010 in **’an, China. Science of the Total Environment, 508, 477–487.

    Article  CAS  Google Scholar 

  • Wang, G., Cheng, S., Li, J., Lang, J., Wen, W., Yang, X., et al. (2015b). Source apportionment and seasonal variation of PM2.5 carbonaceous aerosol in the Bei**g–Tian**–Hebei Region of China. Environmental Science and Pollution Research, 187, 143.

    Google Scholar 

  • Wang, J., Hu, Z. M., Chen, Y. Y., Chen, Z. L., & Xu, S. Y. (2013). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai. China Atmospheric Environment, 68, 221–229.

    Article  CAS  Google Scholar 

  • Wang, D. X., Hu, J. L., Xu, Y., Lv, D., **e, X. Y., Kleeman, M., et al. (2014). Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in **’an, China. Atmospheric Environment, 97, 182–194.

    Article  CAS  Google Scholar 

  • Wang, Q., Liu, M., Yu, Y., & Li, Y. (2016). Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China. Environmental Pollution, 218, 118–128.

    Article  CAS  Google Scholar 

  • Wang, L., Wei, Z., Wei, W., Fu, J. S., Meng, C., & Ma, S. (2015c). Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmospheric Environment, 122, 723–736.

    Article  CAS  Google Scholar 

  • Wang, Z. S., Wu, T., Shi, G. L., Fu, X., Tian, Y. Z., Feng, Y. C., et al. (2012). Potential source analysis for PM10 and PM2.5 in autumn in a northern City in China. Aerosol and Air Quality Research, 12, 39–48.

    Article  CAS  Google Scholar 

  • Wei, F., Teng, E., Wu, G., Hu, W., Wilson, W. E., Chapman, R. S., et al. (1999). Ambient concentration and elemental composition of PM10 and PM2.5 in four Chinese Cities. Environmental Science and Technology, 33(23), 4188–4193.

    Article  CAS  Google Scholar 

  • Wei, Z., Wang, L. T., Chen, M. Z., & Zheng, Y. (2014). The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment. Atmospheric Pollution Research, 5, 759–768.

    Article  CAS  Google Scholar 

  • Wen, W., Cheng, S., Liu, L., Wang, G., & Wang, X. (2016). Source apportionment of PM2.5 in Tangshan, China—Hybrid approaches for primary and secondary species apportionment. Frontier. Environmental Science and Engineering, 10(5), 06.

    Google Scholar 

  • WHO. (2014). WHO’s ambient air pollution database—Update 2014. http://www.who.int/phe/health_topics/outdoorair/databases/AAP_database_methods_2014.pdf?ua = 1.

  • Wu, D., Wang, Z. S., Chen, J. H., Kong, S. F., Fu, X., Deng, H. B., et al. (2014). Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmospheric Research, 149, 217–229.

    Article  CAS  Google Scholar 

  • **a, X., & Wang, G. (2016). Treg/Th17 cells in chronic lung inflammation models exposed to PM2.5 in Bei**g China. Chest, 149(44_S), A407.

    Article  Google Scholar 

  • **ao, Y. H., Liu, S. R., Tong, F. C., Kuang, Y. W., Chen, B. F., & Guo, Y. D. (2014). Characteristics and sources of metals in TSP and PM2.5 in an Urban Forest Park at Guangzhou. Atmosphere, 5, 775–787.

    Article  CAS  Google Scholar 

  • **e, M., Barsanti, K. C., Hannigan, M. P., Dutton, S. J., & Vedal, S. (2013). Positive matrix factorization of PM2.5—Eliminating the effects of gas/particle partitioning of semivolatile organic compounds. Atmospheric Chemistry and Physics, 13, 7381–7393.

    Article  CAS  Google Scholar 

  • **e, Y., Bo, L., Jiang, S., Tian, Z., Kan, H., Li, Y., et al. (2016a). Individual PM2.5 exposure is associated with the impairment of cardiac autonomic modulation in general residents. Environmental Science and Pollution Research, 23(10), 10255–10261.

    Article  CAS  Google Scholar 

  • **e, Y., Dai, H., Dong, H., Hanaoka, T., & Mausi, T. (2016b). Economic impacts from PM2.5 pollution-related health effects in China: A provincial-level analysis. Environmental Science and Technology, 50(9), 4836–4843.

    Article  CAS  Google Scholar 

  • Xu, H., Bi, X. H., Zheng, W. W., Wu, J. H., & Feng, Y. C. (2015). Particulate matter mass and chemical component concentrations over four Chinese cities along the western Pacific coast. Environmental Science and Pollution Research International, 22(3), 1940–1953.

    Article  CAS  Google Scholar 

  • Xu, H., Cao, J., Chow, J. C., Huang, R. J., Shen, Z., Chen, L. W. A., et al. (2016). Inter-annual variability of wintertime PM2.5 chemical composition in **’an, China: Evidences of changing source emissions. Science of the Total Environment, 545–546, 546–555.

    Article  CAS  Google Scholar 

  • Yang, F., Gu, Z. P., Feng, J. L., Liu, X. H., & Yao, X. H. (2014). Biogenic and anthropogenic sources of oxalate in PM2.5 in a mega city, Shanghai. Atmospheric Research, 138, 356–363.

    Article  CAS  Google Scholar 

  • Yang, A., Janssen, N. A. H., Brunekeef, B., Cassee, F. R., Hoek, G., & Gehring, U. (2015). Children’s respiratory health and oxidative potential of PM2.5: The PIAMA birth cohort study. Occupational and Environmental Medicine. https://doi.org/10.1136/oemed-2015-103175.

    Article  Google Scholar 

  • Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., et al. (2011). Characteristics of PM2.5 speciation in representative megacities and across China. Atmospheric Chemistry and Physics, 11(11), 5207–5219.

    Article  CAS  Google Scholar 

  • Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., et al. (2002). The water-soluble ionic composition of PM2.5 in Shanghai and Bei**g, China. Atmospheric Environment, 36(26), 4223–4234.

    Article  CAS  Google Scholar 

  • Yao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., et al. (2016). Sources apportionment of PM2.5 in a background site in the North China Plain. The Science of the Total Environment, 541, 590–598.

    Article  CAS  Google Scholar 

  • Ying, Q., Cureno, I. V., Chen, G., Ali, S., Zhang, H. L., Malloy, M., et al. (2014a). Impacts of stabilized Criegee intermediates, surface uptake processes and higher aromatic secondary organic aerosol yields on predicted PM2.5 concentrations in the Mexico City Metropolitan Zone. Atmospheric Environment, 94, 438–447.

    Article  CAS  Google Scholar 

  • Ying, Q., Wu, L., & Zhang, H. L. (2014b). Local and inter-regional contributions to PM2.5 nitrate and sulfate in China. Atmospheric Environment, 94, 582–592.

    Article  CAS  Google Scholar 

  • Yu, G. H., Cho, S. Y., Bae, M. S., & Park, S. S. (2014). Difference in production routes of water soluble organic carbon in PM2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Environmental Science: Processes Impacts, 16, 1726–1736.

    CAS  Google Scholar 

  • Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., et al. (2013). Characterization and source apportionment of PM2.5 in an urban environment in Bei**g. Aerosol Air Quality Research, 13(2), 574–583.

    Article  CAS  Google Scholar 

  • Zhang, L. Y., & Cao, F. (2015). Fine particulate matter (PM2.5) in China at a city level. Nature, 5, 14884. https://doi.org/10.1038/srep14884.

    Article  CAS  Google Scholar 

  • Zhang, J. M., Chen, J. M., Yang, L. X., Sui, X., Yao, L., Zheng, L. F., et al. (2014a). Indoor PM2.5 and its chemical composition during a heavy haze-fog episode at **an, China. Atmospheric Enviroment, 99, 641–649.

    Article  CAS  Google Scholar 

  • Zhang, J. M., Chen, J. M., Yang, L. X., Sui, X., Yao, L., Zheng, L. F., et al. (2014b). Indoor PM2.5 and its chemical composition during a heavy haze-fog episode at **an. China Atmospheric Environment, 99, 641–649.

    Article  CAS  Google Scholar 

  • Zhang, F., Cheng, H. R., Wang, Z. W., Lv, X. P., Zhu, Z. M., Zhang, G., et al. (2014c). Fine particles (PM2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events. Atmospheric Environment, 86, 193–202.

    Article  CAS  Google Scholar 

  • Zhang, L. Y., Fu, C., Yang, F. M., Yang, J. D., Huang, Y. M., Zhang, Q., et al. (2014d). Determination of metal elements in PM2.5 by ICP-OES with microwave digestion. Spectroscopy Spectral Analysis, 34, 3109–3112.

    CAS  Google Scholar 

  • Zhang, F., Wang, Z. W., Cheng, H. R., Lv, X. P., Gong, W., Wang, X. M., et al. (2015). Seasonal variations and chemical characteristics of PM2.5 in Wuhan, Central China. Science of the Total Environment, 518–519, 97–105.

    Google Scholar 

  • Zhang, S. J., Wu, Y., Liu, H., Wu, X. M., Zhou, Y., Yao, Z. L., et al. (2013). Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory. Atmosphere Environment, 76, 32–42.

    Article  CAS  Google Scholar 

  • Zhao, X. Y., Wang, X. M., Ding, X., He, Q. F., Zhang, Z., Liu, T. Y., et al. (2014). Compositions and sources of organic acids in fine particles (PM2.5) over the Pearl River Delta region, south China. Journal of Environmental Science (China), 26, 110–121.

    Article  CAS  Google Scholar 

  • Zheng, J., Hu, M., Guo, S., Kumar, P., Peng, J., Wu, Z., et al. (2016). Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at the 17 sites in China. Chemosphere, 159, 480–487.

    Article  CAS  Google Scholar 

  • Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., et al. (2005). Seasonal trends in PM2.5 source contributions in Bei**g China. Atmospheric Environment, 39(22), 3967–3976.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SG thanks the Department of Environmental Science and Engineering, Marwadi University, Rajkot, Gujarat, India, for providing the required funding and research-related facilities to complete this review articles. We also thank anonymous reviewers for their suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Gautam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, S., Patra, A.K. & Kumar, P. Status and chemical characteristics of ambient PM2.5 pollutions in China: a review. Environ Dev Sustain 21, 1649–1674 (2019). https://doi.org/10.1007/s10668-018-0123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0123-1

Keywords

Navigation