Log in

Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater is envisaged as a valuable common resource. In the present day, groundwater is declining very rapidly due to human intervention. Stress on groundwater in the semiarid locale of West Bengal, especially in Purulia district, is very high due to immense demand and overexploitation. The fundamental goal of the study is to discover potential groundwater zones for the appraisal of groundwater availability in the Kumari river basin, India. Survey of India topographical maps, elevation data (ASTER DEM 30 m), satellite imageries (Landsat 8 and Sentinel-2) and Google Earth images were analyzed using RS-GIS software (ArcGIS 10.3, ERDAS IMAGINE 9.2, MicroImages TNT MIP Pro 2016) to prepare various thematic data layers like altitude, slope angle, drainage density, geomorphology, soil type, geology, land use/land cover, lineament density, distance from rivers and mean annual rainfall. All prepared maps were changed with GIS software utilizing the raster converter apparatus in the raster space. Weighted layer for each thematic data layer was statistically computed by assigning weight values to individual parameters. Class rank was assigned in light of their significance to underground water recharge. Finally, a groundwater potential zone map was prepared utilizing analytical hierarchy process (AHP) and five distinct zones were arranged accordingly. ROC (receiver operating characteristics) curve and groundwater depth map were prepared using the field data to validate the groundwater zonation map of the Kumari river basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acharya, T., Nag, S. K., & Mallik, S. B. (2012). Hydraulic significance of fracture correlated lineaments in precambrian rocks in Purulia District, West Bengal. Journal of the Geological Society of India, 80, 723–730.

    Article  Google Scholar 

  • Al-Abadi, A. (2015). Groundwater potential map** at northeastern Wasit and Missan governorates, Iraq using a data-driven weights of evidence technique in framework of GIS. Environmental Earth Sciences, 74(2), 1109–1124.

    Article  Google Scholar 

  • Bandyopadhyay, S., Srivastava, S., Jha, M., Hegde, V., & Jayaraman, V. (2007). Harnessing earth observation (EO) capabilities in hydrogeology: An Indian perspective. Hydrogeology Journal, 15(1), 155–158.

    Article  Google Scholar 

  • Cetin, M. (2015a). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10), 640.

    Article  Google Scholar 

  • Cetin, M. (2015b). Evaluation of the sustainable tourism potential of a protected area for landscape planning: A case study of the ancient city of Pompeipolis in Kastamonu. International Journal of Sustainable Development and World Ecology, 22(6), 490–495.

    Article  Google Scholar 

  • Cetin, M. (2015c). Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. International Journal of Sustainable Development and World Ecology, 22(5), 420–424.

    Google Scholar 

  • Cetin, M., & Sevik, H. (2016). Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environmental Monitoring and Assessment, 188(1), 52.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environment Earth Sciences, 5, 1209–1222.

    Article  Google Scholar 

  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring map**: An application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1–2), 79–87.

    Article  Google Scholar 

  • Dar, I., Sankar, K., & Dar, M. (2010). Remote sensing technology and geographic information system modeling: An integrated approach towards the map** of groundwater potential zones in Hardrock terrain, Mamundiyar basin. Journal of Hydrology, 394(3–4), 285–295.

    Article  Google Scholar 

  • Das, R. T. & Pal, S. (2016). Delineation of potential ground water-bearing zones in the Barind tract of West Bengal, India. Environment, Development and Sustainability, pp. 1–25. https://doi.org/10.1007/s10668-016-9897-1.

  • Edet, A. E., Okereke, C. S., Teme, S. C., & Esu, E. O. (1998). Application of remote sensing data to groundwater exploration: A case study of the Cross River State, south eastern Nigeria. Hydrogeology Journal, 6(3), 394–404.

    Article  Google Scholar 

  • Ghayoumian, J., Mohseni Saravi, M., Feiznia, S., Nouri, B., & Malekian, A. (2007). Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences, 30(2), 364–374.

    Article  Google Scholar 

  • Ghosh, P., Bandyopadhyay, S., & Jana, N. (2015). Map** of groundwater potential zones in hard rock terrain using geoinformatics: A case of Kumari watershed in western part of West Bengal. Modeling Earth Systems and Environment, 2(1), 1. https://doi.org/10.1007/s40808-015-0044-z.

    Article  Google Scholar 

  • Ghosh, P. & Jana, N. (2017). Groundwater potentiality of the Kumari River Basin in drought-prone Purulia upland, Eastern India: A combined approach using quantitative geomorphology and GIS. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-017-0142-3.

    Article  Google Scholar 

  • Hassan, S., & Mahmud-ul-islam, S. (2013). Drought vulnerability assessment in the high Barind tract of Bangladesh using MODIS NDVI and land surface temperature (LST) imageries. International Journal of Science and Research, 26, 2319–7064.

    Google Scholar 

  • Hoque, M. S., & Burgess, A. W. G. (2012). 14C dating of deep groundwater in the Bengal Aquifer System, Bangladesh: Implications for aquifer anisotropy, recharge sources and sustainability. Journal of Hydrology, 34, 209–220.

    Article  CAS  Google Scholar 

  • Horton, R. E. (1932). Drainage-basin characteristics. Eos Transactions AGU, 13, 350–361.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage density: Hydrophysical approach to quantitative geomorphology. Geological Society of America Bulletin, 56, 275–370.

    Article  Google Scholar 

  • Jha, M., & Chowdary, V. (2006). Challenges of using remote sensing and GIS in develo** nations. Hydrogeology Journal, 15(1), 197–200.

    Article  Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in salboni block, west Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18, 1713–1728.

    Article  Google Scholar 

  • Kundu, C. (2004). Appraisal of water resources in the Kumari Basin. Geographical Review of India, 66(3), 254–263.

    Google Scholar 

  • Le Page, M., Berjamy, B., Fakir, Y., Bourgin, F., Jarlan, L., Abourida, A., et al. (2012). An Integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resources Management, 26(11), 3209–3230.

    Article  Google Scholar 

  • Lee, S., Song, K. Y., Kim, Y., & Park, I. (2012). Regional groundwater productivity potential map** using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 20(8), 1511–1527.

    Article  Google Scholar 

  • Magesh, N., Chandrasekar, N., & Soundranayagam, J. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196.

    Article  Google Scholar 

  • Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential map** using remote sensing data and GIS. Arabian Journal of Geoscience, 7, 711–724.

    Article  Google Scholar 

  • Manap, M., Sulaiman, W., Ramli, M., Pradhan, B., & Surip, N. (2013). A knowledge-driven GIS modeling technique for groundwater potential map** at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences, 6(5), 1621–1637.

    Article  Google Scholar 

  • Mogaji, K., Lim, H., & Abdullah, K. (2014). Regional prediction of groundwater potential map** in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arabian Journal of Geosciences, 8(5), 3235–3258.

    Article  Google Scholar 

  • Moghaddam, D., Rezaei, M., Pourghasemi, H., Pourtaghie, Z., & Pradhan, B. (2013). Groundwater spring potential map** using bivariate statistical model and GIS in the Taleghan Watershed, Iran. Arabian Journal of Geosciences, 8(2), 913–929.

    Article  Google Scholar 

  • Murthy, K. (2000). Ground water potential in a semi-arid region of Andhra Pradesh—A geographical information system approach. International Journal of Remote Sensing, 21(9), 1867–1884.

    Article  Google Scholar 

  • Nag, S. K. (2005). Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Bagmundi Block in Purulia District, West Bengal. Journal of the Indian Society of Remote Sensing, 33(4), 521–529.

    Article  Google Scholar 

  • Nag, S. (2016). Delineation of groundwater potential zones in hard rock terrain in Kashipur block, Purulia District, West Bengal, using geospatial techniques. International Journal of Waste Resources, 06(01), 1–7. https://doi.org/10.4172/2252-5211.1000201.

    Article  Google Scholar 

  • Naghibi, S., Pourghasemi, H., Pourtaghi, Z., & Rezaei, A. (2014). Groundwater qanat potential map** using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8(1), 171–186.

    Article  Google Scholar 

  • Nampak, H., Pradhan, B., & Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • Negnevitsky, M. (2002). Artificial intelligence: A guide to intelligent systems. Harlow: Pearson.

    Google Scholar 

  • Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS map** of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399, 158–172.

    Article  Google Scholar 

  • Ozdemir, A. (2011). Using a binary logistic regression method and GIS for evaluating and map** the groundwater spring potential in the sultan mountains (Aksehir, Turkey). Journal of Hydrology, 405(1), 123–136.

    Article  Google Scholar 

  • Pitz, C. F. (2016). Predicted impacts of climate change on groundwater resources of Washington State (pp. 1–25). Washington: Environmental Assessment Program Washington State Department of Ecology Olympia.

    Google Scholar 

  • Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility map** at Haraz watershed, Iran. Natural Hazards, 63, 965–996.

    Article  Google Scholar 

  • Pourtaghi, Z., & Pourghasemi, H. (2014). GIS-based groundwater spring potential assessment and map** in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3), 643–662.

    Article  Google Scholar 

  • Pradhan, B., Singh, R., & Buchroithner, M. (2006). Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Advances in Space Research, 37(4), 698–709.

    Article  Google Scholar 

  • Rahman, M., & Mahbub, A. Q. M. (2012). Lithological study and map** of Barind Tract using borehole log data with GIS: In the context of Tanore Upazila. Earth and Environmental Science, 4, 349–357.

    Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). An exposition of the AHP in reply to the paper “Remarks on the analytic hierarchy process’’. Management Science, 36(3), 259.

    Article  Google Scholar 

  • Saaty, T. L. (1996). Decision making with dependence and feedback, the analytic network process. Pittsburgh: RWS Publications.

    Google Scholar 

  • Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process (Vol. 6). Pittsburgh: Rws Publications.

    Google Scholar 

  • Saha, S. (2017). Groundwater potential map** using analytical hierarchical process: A study on Md. Bazar Block of Birbhum District, West Bengal. Spatial Information Research, 25(4), 615–626.

    Article  Google Scholar 

  • Shahid, S., Nath, S., & Roy, J. (2000). Groundwater potential modelling in a soft rock area using a GIS. International Journal of Remote Sensing, 21(9), 1919–1924.

    Article  Google Scholar 

  • Sharma, R. (2009). Cratons of the Indian shield. In Cratons and fold belts of India. Lecture Notes in Earth Sciences (Vol 127, pp. 41–115). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-01459-8_2.

  • Tiwari, A., & Rai, B. (1996). Hydromorphological map** for ground-water prospecting using landsat-MSS images—A case study of Part of Dhanbad District, Bihar. Journal of the Indian Society of Remote Sensing, 24, 281–285.

    Article  Google Scholar 

  • Vaux, H. (2011). Groundwater under stress: The importance of management. Environmental Earth Science, 62, 19–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deb Kumar Maity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D.K., Mandal, S. Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach. Environ Dev Sustain 21, 1013–1034 (2019). https://doi.org/10.1007/s10668-017-0072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-0072-0

Keywords

Navigation