Log in

Geostatistical Evaluation of Spatial Variation Related to Groundwater Quality Database: Case Study for Arak Plain Aquifer, Iran

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Geostatistical methods are one of the advanced techniques to interpolate groundwater quality data. Geostatistical interpolation techniques employ both the mathematical and the statistical properties of the measured points. Compiling the data distribution on spatial and temporal domain is of crucial importance in order to evaluate its quality and safety. The main purpose of this paper is to assess groundwater quality of Arak plain, Iran, by an unbiased interpolated method so called Kriging. Therefore, seven quality variables of Arak plain aquifer including TDS, SAR, EC, Na+, TH, Cl, and SO4 2− have been analyzed, studied, and interpreted statistically and geostatistically. Utilized data in this study were collected from 97 water well samples in Arak plain, in 2012. After normalizing data, variogram as a geostatistical tool for defining spatial regression was calculated and experimental variograms have been plotted by GS+ software, then the best theoretical model was fitted to each variogram based on minimum RSS error. Cross validation was used to determine the accuracy of the estimated data. The uncertainty of the method could be well assessed via this method since the method not only gave the average error (around 0 in this study) but also gave the standard deviation of the estimations. Therefore, more than 3800 points were estimated by ordinary Kriging algorithm in places which have not been sampled. Finally, estimation maps of groundwater quality were prepared and map of estimation variance, EV, has been presented to assess the quality of estimation in each estimated point. Results showed that the Kriging method is more accurate than the traditional interpolation algorithms not honoring the spatial properties of the database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. Sahebjalal, E. (2012). Application of geostatistical analysis for evaluating variation in groundwater characteristics. Journal of World Applied Sciences, 18(1), 135–141.

    CAS  Google Scholar 

  2. Diodato, N., & Ceccarelli, M. (2005). Interpolation processes using multivariate geostatistics for map** of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth Surface Process, Landforms, 30(3), 259–268.

    Article  Google Scholar 

  3. Istok, J. D., & Cooper, R. M. (1988). Geostatistics applied to groundwater pollution. III: global estimates. Journal of Environmental Engineering, 114(4), 915–928.

    Article  CAS  Google Scholar 

  4. Jager, N. (1990). Hydrogeology and groundwater simulation. Lewis Publishers, 512 p.

  5. Gupta, A.D., Jayakrishnan, R., Onta, P.R., & Ramnarong, V. (1995). Assessment of groundwater quality for the Bangkok aquifer system. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 227, 3–13

  6. D’Agostino, V., Greene, E. A., Passarella, G., & Vurro, M. (1998). Spatial and temporal study of nitrate concentration in groundwater by means of co-regionalization. Environmental Geology, 36(3–4), 285–295.

    Article  Google Scholar 

  7. Pozdnyakova, L., & Zhang, R. (1999). Geostatistical analyses of soil salinity in a large field. Precision Agriculture, 1(2), 153–165.

    Article  Google Scholar 

  8. Mouser, P.J., & Rizzo, D.M. (2004). Evaluation of geostatistics for combined hydrochemistry and microbial community fingerprinting at a waste disposal site. Critical Transitions in Water and Environmental Resources Management, pp 1–11.

  9. Ahmed, S. (2002). Groundwater monitoring network design: application of geostatistics with a few case studies from a granitic aquifer in a semiarid region. Journal of Groundwater Hydrology, 2, 37–57.

    Google Scholar 

  10. Desbarats, A. J., Logan, C. E., Hinton, M. J., & Sharpe, D. R. (2002). On the Kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology, 255(1), 25–38.

    Article  Google Scholar 

  11. Amini, M., Khadi, H., & Fathianpour, N. (2002). Comparison of Kriging and co-Kriging methods for estimating Cl-concentration of soil. Iranian Journal of Agricultural Science (In Persian), 33(4), 741–748.

    Google Scholar 

  12. Gaus, I., Kinniburgh, D. G., Talbot, J. C., & Webster, R. (2003). Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging. Journal of Environmental Geology, 44(8), 939–948.

    Article  CAS  Google Scholar 

  13. He, J.Y., & Jia, X. (2004). ArcGIS geostatistical analyst application in assessment of MTBE contamination. In Proceedings of ESRI User Conference 2004.

  14. Finke, P. A., Brus, D. J., Bierkens, M. F. P., Hoogland, T., Knotters, M., & De Vries, F. (2004). Map** groundwater dynamics using multiple sources of exhaustive high resolution data. Geoderma, 123(1), 23–39.

    Article  Google Scholar 

  15. Sarangi, A., Madramootoo, C. A., Enright, P., & Chandrasekharan, H. (2005). Prediction of spatial variability of phosphorous over the St-esprit watershed. Journal of Water, Air, & Soil Pollution, 168(1–4), 267–288.

    Article  CAS  Google Scholar 

  16. Barca, E., & Passarella, G. (2008). Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive Kriging and geostatistical simulation. Journal of Environmental Monitoring & Assessment, 137(1–3), 261–273.

    Article  CAS  Google Scholar 

  17. Mehrjardi, R. T., Jahromi, M. Z., Mahmoudi, S., & Heidari, A. (2008). Spatial distribution of groundwater quality with geostatistics (case study: Yazd- Ardakan Plain). Journal of World Applied Sciences, 4, 9–17.

    Google Scholar 

  18. Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (pp. 225–226). Brisbane: Wiley.

    Google Scholar 

  19. Bohling, G. (2005). Introduction to geostatistics and variogram analysis. Kansas Geological Survey, 20 p.

  20. Chappell, A., Heritage, G. L., Fuller, I. C., Large, A. R., & Milan, D. J. (2003). Geostatistical analysis of ground-survey elevation data to elucidate spatial and temporal river channel change. Earth Surface Processes & Landforms, 28(4), 349–370.

    Article  Google Scholar 

  21. Gundogdu, K. S., & Guney, I. (2007). Spatial analyses of groundwater levels using universal Kriging. Journal of Earth System Science, 116(1), 49–55.

    Article  Google Scholar 

  22. Sarangi, A., Cox, C. A., & Madramootoo, C. A. (2005). Geostatistical methods for prediction of spatial variability of rainfall in a mountainous region. Transactions of ASAE, 48(3), 943–954.

    Article  Google Scholar 

  23. Kitanidis, P. K. (1997). Introduction to geostatistics: applications in hydrogeology. California: Cambridge University Press.

    Book  Google Scholar 

  24. Gong, G., Mattevada, S., & O’Bryant, S. E. (2014). Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Journal of Environmental Research, 130, 59–69.

    Article  CAS  Google Scholar 

  25. Fathianpour, N., Darabi, M., Maghsoudi, S., & Sartaj, M. (2012). Estimation comparison of nitrate concentration in Arak plain aquifer using neural network and local multivariate regression. 16th Meeting of the Geological Society of Iran.

  26. Mohammadi, G. M., Ebrahimi, K., & Araghinejad, S. (2011). Groundwater quantity and quality evaluation: a case study for Saveh and Arak aquifers. Journal of Soil & Water (Agricultural Science), 21(2), 93–108.

    Google Scholar 

  27. Howarth, R. J., & Earle, S. A. M. (1979). Application of a generalized power transformation to geochemical data. Journal of the International Association for Mathematical Geology, 11(1), 45–62.

    Article  CAS  Google Scholar 

  28. Matheron, G., (1971). The theory of regionalized variables and its applications: Fontainebleau, Centre de Morphologie Mathématique de Fontainebleau, 211 p.

  29. Sajil Kumar, P. J., Jegathambal, P., & James, E. J. (2011). Multivariate and geostatistical analysis of groundwater quality in Palar river basin. International Journal of Geology, 5, 108–119.

    Google Scholar 

  30. Lin, Y. P., Tan, Y. C., & Rouhani, S. (2001). Identifying spatial characteristics of transmissivity using simulated annealing and kriging methods. Journal of Environmental Geology, 41, 200–208.

    Article  Google Scholar 

  31. Rogerson, P. A., Delmelle, E., Batta, R., Akella, M., Blatt, A., & Wilson, G. (2004). Optimal sampling design for variables with varying spatial importance. Journal of Geographical Analysis, 36(2), 177–194.

    Article  Google Scholar 

  32. De Marsily, M. (1986). Quantitative hydrogeology; groundwater hydrology for engineers. Academic Press.

  33. Theodossiou, N., & Latinopoulos, P. (2006). Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Journal of Environmental Modeling & Software, 21(7), 991–1000.

    Article  Google Scholar 

  34. Bailey, T., & Gatrell, A. C. (1995). Interactive spatial data analysis. Essex: Addison Wesley Longman Limited.

    Google Scholar 

  35. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  36. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics (p. 600). Orlando: Academic Press, New York.

    Google Scholar 

  37. Goovaerts, P. (1997). Geostatistics for natural resources evaluation (p. 483). New York: Oxford University Press.

    Google Scholar 

  38. Journel, A.G. (1989). In: Fundamentals of geostatistics in five lessons, short course in geology. American Geophysical Union, 8, 10 p.

  39. Marinoni, O. (2003). Improving geological models using a combined ordinary–indicator kriging approach. Journal of Engineering Geology, 69(1), 37–45.

    Article  Google Scholar 

  40. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: geostatistical software library and user’s guide. Second edition (p. 369). New York: Oxford University Press.

    Google Scholar 

  41. Draper, N.R., & Smith, H. (1998). Applied regression analysis (3rd ed.). Wiley. ISBN 0-471-17082-8.

  42. Kerry, R., & Oliver, M. A. (2007). Determining the effect of asymmetric data on the variogram. II. Outliers. Journal of Computers & Geosciences, 33(10), 1233–1260.

    Article  Google Scholar 

  43. Lark, R. M. (2000). A comparison of some robust estimators of the variogram for use in soil survey. European Journal of Soil Science, 51(1), 137–157.

    Article  Google Scholar 

  44. Clayton, V., & Journel, A.G. (1998). GSLIB-geostatistical software library and user’s guide. Technometrics.

  45. Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492.

    Article  Google Scholar 

  46. Boukouvala, F., & Ierapetritou, M. G. (2012). Feasibility analysis of black-box processes using an adaptive sampling Kriging-based method. Computers & Chemical Engineering, 36(10), 358–368.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, M., Karami, S. & Marj, A.F. Geostatistical Evaluation of Spatial Variation Related to Groundwater Quality Database: Case Study for Arak Plain Aquifer, Iran. Environ Model Assess 21, 707–719 (2016). https://doi.org/10.1007/s10666-016-9506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9506-6

Keywords

Navigation