Log in

Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The impact of land use on water quality is becoming a global concern due to the increasing demand for freshwater. This study aimed to assess the effects of land use and land cover (LULC) on the surface water quality of the Buriganga, Dhaleshwari, Meghna, and Padma river system in Bangladesh. To determine the state of water, water samples were collected from twelve locations in the Buriganga, Dhaleshwari, Meghna, and Padma rivers during the winter season of 2015 and collected samples were analysed for seven water quality indicators: pH, temperature (Temp.), conductivity (Cond.), dissolved oxygen (DO), biological oxygen demand (BOD), nitrate nitrogen (NO3-N), and soluble reactive phosphorus (SRP) for assessing water quality (WQ). Additionally, same-period satellite imagery (Landsat-8) was utilised to classify the LULC using the object-based image analysis (OBIA) technique. The overall accuracy assessment and kappa co-efficient value of post-classified images were 92% and 0.89, respectively. In this research, the root mean squared water quality index (RMS-WQI) model was used to determine the WQ status, and satellite imagery was utilised to classify LULC types. Most of the WQs were found within the ECR guideline level for surface water. The RMS-WQI result showed that the “fair” status of water quality found in all sampling sites ranges from 66.50 to 79.08, and the water quality is satisfactory. Four types of LULC were categorised in the study area mainly comprised of agricultural land (37.33%), followed by built-up area (24.76%), vegetation (9.5%), and water bodies (28.41%). Finally, the Principal component analysis (PCA) techniques were used to find out significant WQ indicators and the correlation matrix revealed that WQ had a substantial positive correlation with agricultural land (r = 0.68, P < 0.01) and a significant negative association with the built-up area (r =  − 0.94, P < 0.01). To the best of the authors’ knowledge, this is the first attempt in Bangladesh to assess the impact of LULC on the water quality along the longitudinal gradient of a vast river system. Hence, we believe that the findings of this study can support planners and environmentalists to plan and design landscapes and protect the river environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author upon reasonable request.

References

  • Abed, B. S., Farhan, A. R., Ismail, A. H., & Al Aani, S. (2022). Water quality index toward a reliable assessment for water supply uses: A novel approach. International Journal of Environmental Science and Technology, 19(4), 2885–2898. https://doi.org/10.1007/s13762-021-03338-7

    Article  CAS  Google Scholar 

  • Ahmed, B., Rahman, M. S., Sammonds, P., Islam, R., & Uddin, K. (2020). Application of geospatial technologies in develo** a dynamic landslide early warning system in a humanitarian context: The Rohingya refugee crisis in Cox’s Bazar, Bangladesh. Geomatics, Natural Hazards and Risk, 11(1), 446–468. https://doi.org/10.1080/19475705.2020.1730988

    Article  Google Scholar 

  • Akhtar, N., Ishak, M. I. S., Ahmad, M. I., Umar, K., Md Yusuff, M. S., Anees, M. T., & Ali Almanasir, Y. K. (2021). Modification of the water quality index (WQI) process for simple calculation using the multi-criteria decision-making (MCDM) method: A review. Water, 13(7), 905. https://doi.org/10.3390/w13070905

  • Akter, S. H. I. L. P. I., Saifullah, A. S. M., Meghla, N. T., Uddin, M. J., & Diganta, M. T. M. (2018). Seasonal variation of phytoplankton abundance and water quality parameters in Jamuna river. Journal of  Science and Technology, 8, 107–123.

  • Aljanabi, Z. Z., Al-Obaidy, A. H. M. J., & Hassan, F. M. (2021, June). A brief review of water quality indices and their applications. In IOP Conference Series: Earth and Environmental Science, 779(1), 012088. IOP Publishing. https://doi.org/10.1088/1755-1315/779/1/012088

  • Asha, Ayesha Siddiqua, Saifullah, A. . S. . M. ., Uddin, Md. Galal., Sheikh, Md. Shemul., Uddin, Muhammad Jasim, & Diganta, Mir Talas Mahammad. (2020). Assessment of trace metal in macroalgae and sediment of the Sundarban mangrove estuary. Applied Water Science, 10(1)

  • Attua, E. M., Ayamga, J., & Pabi, O. (2014). Relating land use and land cover to surface water quality in the Densu River basin, Ghana. International Journal of River Basin Management, 12(1), 57–68. https://doi.org/10.1080/15715124.2014.880711

    Article  Google Scholar 

  • Bashar, T., & Fung, I. W. H. (2020). Water pollution in a densely populated megapolis. Dhaka. Water, 12(8), 2124. https://doi.org/10.3390/W12082124

    Article  CAS  Google Scholar 

  • Billah, M. M., Kamal, A. H. M., Hoque, M. M., & Bhuiyan, M. K. A. (2016). Temporal distribution of water characteristics in the Miri estuary, east Malaysia. Zoology and Ecology, 26(2), 134–140. https://doi.org/10.1080/21658005.2016.1148960

    Article  Google Scholar 

  • Bhuyan, M. S., Bakar, M. A., Akhtar, A., Hossain, M. B., & Islam, M. S. (2017). Analysis of water quality of the Meghna River using multivariate analyses and Rpi. Journal of the Asiatic Society of Bangladesh, Science, 43(1), 23–35. https://doi.org/10.3329/JASBS.V43I1.46241

    Article  Google Scholar 

  • Bonansea, M., Bazán, R., Germán, A., Ferral, A., Beltramone, G., Cossavella, A., & Pinotti, L. (2021). Assessing land use and land cover change in Los Molinos reservoir watershed and the effect on the reservoir water quality. Journal of South American Earth Sciences, 108, 103243. https://doi.org/10.1016/j.jsames.2021.103243

  • Cisneros, B. E. J., Oki, T., Arnell, N.W., Benito, G., Cogley, J. G., Döll, P., Jiang, T., & Mwakalila, S. S. (2014) Freshwater resources. In: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229–269.

  • Chai, N., Yi, X., **ao, J., Liu, T., Liu, Y., Deng, L., & **, Z. (2021). Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River. Science of the Total Environment, 757, 143882. https://doi.org/10.1016/j.scitotenv.2020.143882

  • Cheah, E. H., & Hamid, S. A. (2016). Determination of water quality of rivers under various land use activities using physico-chemical indicators and bacterial populations in Northern Peninsular Malaysia. Wetland Science, 14(6), 788–798. https://doi.org/10.13248/j.cnki.wetlandsci.2016.06.005

  • Chen, X., Zhou, W., Pickett, S. T., Li, W., & Han, L. (2016). Spatial-temporal variations of water quality and its relationship to land use and land cover in Bei**g, China. International Journal of Environmental Research and Public Health, 13(5), 449. https://doi.org/10.3390/ijerph13050449

    Article  CAS  Google Scholar 

  • Chotpantarat, S., & Boonkaewwan, S. (2018). Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrological Sciences Journal, 63(9), 1386–1407. https://doi.org/10.1080/02626667.2018.1506128

    Article  CAS  Google Scholar 

  • Chughtai, A. H., Abbasi, H., & Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22, 100482. https://doi.org/10.1016/j.rsase.2021.100482

  • Clarke, K. R., & Gorley, R. N. (2006). Primer v6: User manual/tutorial (Plymouth routines in multivariate ecological research).

  • Das, N., Mondal, P., Sutradhar, S., & Ghosh, R. (2021). Assessment of variation of land use/land cover and its impact on land surface temperature of Asansol subdivision. The Egyptian Journal of Remote Sensing and Space Science, 24(1), 131–149. https://doi.org/10.1016/j.ejrs.2020.05.001

    Article  Google Scholar 

  • de Mello, K., Valente, R. A., Randhir, T. O., dos Santos, A. C. A., & Vettorazzi, C. A. (2018). Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. CATENA, 167, 130–138. https://doi.org/10.1016/J.CATENA.2018.04.027

    Article  Google Scholar 

  • Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233. https://doi.org/10.1016/j.envint.2009.07.001

    Article  CAS  Google Scholar 

  • Dede, O. T., Telci, I. T., & Aral, M. M. (2013). The use of water quality index models for the evaluation of surface water quality: A case study for Kirmir Basin, Ankara, Turkey. Water Quality, Exposure and Health, 5(1), 41–56. https://doi.org/10.1007/s12403-013-0085-3

    Article  CAS  Google Scholar 

  • Diganta, M. T. M., Sharmi, T. T., Saifullah, A. S. M., Uddin, M. J., & Sajib, A. M. (2020). Appraisal of heavy metal contamination in road dust and human health risk in a municipality of Bangladesh. Environmental Engineering & Management Journal (EEMJ), 19(12).

  • Ding, J., Jiang, Y., Fu, L., Liu, Q., Peng, Q., & Kang, M. (2015). Impacts of land use on surface water quality in a subtropical river basin: A case study of the Dongjiang River basin. Southeastern China. Water, 7(12), 4427–4445. https://doi.org/10.3390/w7084427

    Article  CAS  Google Scholar 

  • DoE. (2015). River water quality report 2015. Ministry of Environment and Forest. Government of Bangladesh. Retrieved on 1 January 2022 from http://www.doe.gov.bd/site/publications/6fa41411-904e-43f2-be31-f2744c68f42d/River-Water-Quality-Report-2015

  • Dordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., & Barth, J. A. (2022). Novel evaluations of sources and sinks of dissolved oxygen via stable isotopes in lentic water bodies. Science of The Total Environment, 838, 156541. https://doi.org/10.1016/j.scitotenv.2022.156541

  • ECR-97. (1997). The environment conservation rule. Department of Environment, Bangladesh, Rule 12, Standards for Water, Schedule 3.

  • Edokpayi, J. N., Odiyo, J. O., & Durowoju, O. S. (2017). Impact of wastewater on surface water quality in develo** countries: A case study of South Africa. In H. Tutu (Ed.), Water Quality (pp. 401–416). IntechOpen. https://doi.org/10.5772/66561

  • Environmental Systems Research Institute (ESRI). (2023b), Proportional symbols, ArcGIS Pro 3.0., Redlands, CA. Retrieved January 01, 2023, from https://pro.arcgis.com/en/pro-app/latest/help/map**/layer-properties/proportional-symbology.htm#:~:text=Proportional%20symbology%20is%20used%20to,magnitude%20of%20a%20feature%20attribute

  • Environmental Systems Research Institute (ESRI) (2023a), Grid index features (cartography), ArcGIS Pro 3.0., Redlands, CA. Retrieved January 01 2023, from https://pro.arcgis.com/en/pro-app/latest/tool-reference/cartography/grid-index-features.htm

  • Fashae, O. A., Ayorinde, H. A., Olusola, A. O, & Obateru, R. O. (2019). Landuse and surface water quality in an emerging urban city. Applied Water Science, 9(2), 1–12. https://doi.org/10.1007/s13201-019-0903-2

    Article  CAS  Google Scholar 

  • Foody, G. M. (2008). Harshness in image classification accuracy assessment. International Journal of Remote Sensing, 29(11), 3137–3158. https://doi.org/10.1080/01431160701442120

    Article  Google Scholar 

  • Fu, D., Chen, S., Chen, Y., & Yi, Z. (2022). Development of modified integrated water quality index to assess the surface water quality: A case study of Tuo River. China. Environmental Monitoring and Assessment, 194(5), 1–15. https://doi.org/10.1007/s10661-022-09998-3

    Article  Google Scholar 

  • Gao, P., Li, Z., & Qin, Z. (2019). Usability of value-by-alpha maps compared to area cartograms and proportional symbol maps. Journal of Spatial Science, 64(2), 239–255. https://doi.org/10.1080/14498596.2018.1440649

    Article  Google Scholar 

  • Gupta, S., & Gupta, S. K. (2021). A critical review on water quality index tool: Genesis, evolution and future directions. Ecological Informatics, 63, 101299. https://doi.org/10.1016/j.ecoinf.2021.101299

  • Hasan, M. M., Ahmed, M. S., Adnan, R., & Shafiquzzaman, M. (2020). Water quality indices to assess the spatiotemporal variations of Dhaleshwari river in central Bangladesh. Environmental and Sustainability Indicators, 8, 100068. https://doi.org/10.1016/J.INDIC.2020.100068

  • Hasan, M. K., Shahriar, A., & Jim, K. U. (2019). Water pollution in Bangladesh and its impact on public health. Heliyon, 5(8), e02145. https://doi.org/10.1016/J.HELIYON.2019.E02145

  • Hossain, M. N., Rahaman, A., Hasan, M. J., Uddin, M. M., Khatun, N., & Shamsuddin, S. M. (2021). Comparative seasonal assessment of pollution and health risks associated with heavy metals in water, sediment and fish of Buriganga and Turag River in Dhaka City. Bangladesh. SN Applied Sciences, 3(4), 1–16. https://doi.org/10.1007/S42452-021-04464-0

    Article  Google Scholar 

  • Islam, M. S., Afroz, R., & Mia, M. B. (2019). Investigation of surface water quality of the Buriganga river in Bangladesh: Laboratory and spatial analysis approaches. Dhaka University Journal of Biological Sciences, 28(2), 147–158. https://doi.org/10.3329/DUJBS.V28I2.46501

    Article  Google Scholar 

  • Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy assessment of land use change analysis using Google Earth in Sadar Watershed Mojokerto Regency. In IOP Conference Series: Earth and Environmental Science (Vol. 950, No. 1, p. 012091). IOP Publishing. https://doi.org/10.1088/1755-1315/950/1/012091

  • Kabir, M. H., Tusher, T. R., Hossain, M. S., Islam, M. S., Shammi, R. S., Kormoker, T., Proshad, R., & Islam, M. (2020). Evaluation of spatio-temporal variations in water quality and suitability of an ecologically critical urban river employing water quality index and multivariate statistical approaches: A study on Shitalakhya river, Bangladesh. Human and Ecological Risk Assessment: An International Journal, 27(5), 1388–1415. https://doi.org/10.1080/10807039.2020.1848415

    Article  CAS  Google Scholar 

  • Kamal, M. M., Malmgren-Hansen, A., & Badruzzaman, A. B. M. (1999). Assessment of pollution of the River Buriganga, Bangladesh, using a water quality model. Water Science and Technology, 40(2), 129–136. https://doi.org/10.1016/S0273-1223(99)00474-6

    Article  CAS  Google Scholar 

  • Kang, J. H., Lee, S. W., Cho, K. H., Ki, S. J., Cha, S. M., & Kim, J. H. (2010). Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin. Water Research, 44(14), 4143–4157. https://doi.org/10.1016/J.WATRES.2010.05.009

    Article  CAS  Google Scholar 

  • Kibria, M. G., Kadir, M. N., & Alam, S. (2015). Buriganga river pollution: Its causes and impacts. International Conference on Recent Innovation in Civil Engineering for Sustainable Development (IICSD-2015), 323–328.

  • Kim, T., Kim, Y., Shin, J., Go, B., & Cha, Y. (2020). Assessing land-cover effects on stream water quality in metropolitan areas using the water quality index. Water, 12(11), 3294. https://doi.org/10.3390/W12113294

    Article  CAS  Google Scholar 

  • Kimwatu, D. M., Mundia, C. N., & Makokha, G. O. (2021). Develo** a new socio-economic drought index for monitoring drought proliferation: A case study of Upper Ewaso Ngiro River Basin in Kenya. Environmental Monitoring and Assessment, 193(4), 1–22. https://doi.org/10.1007/s10661-021-08989-0

    Article  Google Scholar 

  • Kumar, P., Dasgupta, R., Johnson, B. A., Saraswat, C., Basu, M., Kefi, M., & Mishra, B. K. (2019). Effect of land use changes on water quality in an ephemeral coastal plain: Khambhat City, Gujarat. India. Water, 11(4), 724. https://doi.org/10.3390/w11040724

    Article  CAS  Google Scholar 

  • Li, S., Gu, S., Liu, W., Han, H., & Zhang, Q. (2008). Water quality in relation to land use and land cover in the upper Han River Basin. China. Catena, 75(2), 216–222. https://doi.org/10.1016/J.CATENA.2008.06.005

    Article  CAS  Google Scholar 

  • Liu, W., Zhang, Q., & Liu, G. (2012). Influences of watershed landscape composition and configuration on lake-water quality in the Yangtze River basin of China. Hydrological Processes, 26(4), 570–578. https://doi.org/10.1002/HYP.8157

    Article  CAS  Google Scholar 

  • Liu, X., Zhong, K., Sun, C., & Li, X. (2016). The correlation between land use and water quality in the typical urbanized region of China: A case study in the river net area of Pearl River delta. In Weng Q., Gamba P., ** using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017. Environmental Science and Pollution Research, 27, 66–74. https://doi.org/10.1007/s11356-019-05589-x

    Article  Google Scholar 

  • Malak, M. A., Prema, S. F., Sajib, A. M., & Hossain, N. J. (2022). Livelihood of independent waste pickers (Tokai) at Dhaka City in Bangladesh: Does it incidental choice of them?. Indonesian Journal of Geography, 54(1), 92–104. https://doi.org/10.22146/IJG.65461

  • Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2021). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7), e3998. https://doi.org/10.1002/ett.3998

  • Muhammed, H. H., Nasidi, N. M., & Wayayok, A. (2022). Impact of climate changes and landuse/land cover changes on water resources in Malaysia. In Environmental Degradation in Asia (pp. 465–483). Springer, Cham. https://doi.org/10.1007/978-3-031-12112-8_21

  • Müller, R., & Wiedemann, F. (1995). Die Bestimmung des Nitrats in Wasser. Jahrbuch für Wasserchemie und Wasserreinigungstechnik. Verlag Chemie, Reinbek, 12, 247–271.

    Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27(C), 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

  • Nahar, N., Mahiuddin, S., & Hossain, Z. (2021). The severity of environmental pollution in the develo** countries and its remedial measures. Earth, 2(1), 124–139. https://doi.org/10.3390/EARTH2010008

    Article  Google Scholar 

  • Nargis, A., Habib, A., Harun-Or-Rashid, H., & H. B., Islam Sarker, M. S., **, R., Liu, G., Liu, W., Al-Razee, A. N. M., Chen, K., & Cai, M. (2021). Status of multielement in water of the river Buriganga, Bangladesh: Aquatic chemistry of metal ions in polluted river water. Emerging Contaminants, 7, 99–115. https://doi.org/10.1016/J.EMCON.2021.03.001

    Article  CAS  Google Scholar 

  • Nasir, S. M., Kamran, K. V., Blaschke, T., & Karimzadeh, S. (2022). Change of land use/land cover in kurdistan region of Iraq: A semi-automated object-based approach. Remote Sensing Applications: Society and Environment, 26, 100713. https://doi.org/10.1016/j.rsase.2022.100713

  • Nigmatov, A., Rasulov, A., & Tobirov, O. (2022). Methodology for assessing the tourist potential of the nature of the Fergana Valley using GIS technologies and experimental methods. Journal of Pharmaceutical Negative Results, 2268–2286. https://doi.org/10.20944/preprints202209.0181.v1

  • Pana et al., 2022 - Paná, S., Ferral, A., Marinelli, M. V., Petrosillo, I., del Valle Asís, I., Roqué, M., & Bonansea, M. (2022). Study of the impacts of Land Use-Land Cover on surface water quality based on field data and satellite information. In 2022 IEEE Biennial Congress of Argentina (ARGENCON) (pp. 1–7). IEEE.

  • Parween, S., Siddique, N. A., Diganta, M. T. M., Olbert, A. I., & Uddin, M. G. (2022). Assessment of urban river water quality using modified NSF water quality index model at Siliguri city, West Bengal, India. Environmental and Sustainability Indicators, 16, 100202. https://doi.org/10.1016/j.indic.2022.100202

  • Petropoulos, G. P., Kalivas, D. P., Georgopoulou, I. A., & Srivastava, P. K. (2015). Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: Case of Athens, Greece. Journal of Applied Remote Sensing, 9(1), 096088. https://doi.org/10.1117/1.jrs.9.096088

  • Pramanik, B. K., & Sarker, D. C. (2013). Evaluation of surface water quality of the Buriganga River. Journal of Water Reuse and Desalination, 3(2), 160–168. https://doi.org/10.2166/WRD.2013.059

    Article  CAS  Google Scholar 

  • Quader, M. A. (2019). Impact of Rohingya settlement on the landcovers at Ukhiya Upazila in Cox’s Bazar, Bangladesh. Jagannath University Journal of Life and Earth Sciences, 5(1), 13–18.

    Google Scholar 

  • Quader, M. A., Dey, H., Malak, M., & Sajib, A. M. (2021). Rohingya refugee flooding and changes of the physical and social landscape in Ukhiya, Bangladesh. Environment, Development and Sustainability, 23(3), 4634–4658. https://doi.org/10.1007/s10668-020-00792-0

  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rahman, M. S., Ahmed, A. S. S., Rahman, M. M., Babu, S. M. O. F., Sultana, S., Sarker, S. I., Awual, R., Rahman, M. M., & Rahman, M. (2021b). Temporal assessment of heavy metal concentration and surface water quality representing the public health evaluation from the Meghna River estuary. Bangladesh. Applied Water Science, 11(7), 1–16. https://doi.org/10.1007/S13201-021-01455-9

    Article  Google Scholar 

  • Rahman, A., Jahanara, I., & Jolly, Y. N. (2021a). Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Science and Engineering, 14(2), 139–148. https://doi.org/10.1016/J.WSE.2021.06.006

    Article  Google Scholar 

  • Rahman, M. A., Moniruzzaman, M., & Akter, S. (2018). Dynamic Progression of Disaster Induced Vulnerability: A Study on Dhaka City. Journal of Patuakhali Science and Technology University, 9(1&2), 97–110.

  • Ram, A., Tiwari, S. K., Pandey, H. K., Chaurasia, A. K., Singh, S., & Singh, Y. V. (2021). Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11(2), 1–20. https://doi.org/10.1007/s13201-021-01376-7

    Article  CAS  Google Scholar 

  • Rather, I. A., & Dar, A. Q. (2020). Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya. India. Applied Water Science, 10(10), 1–18. https://doi.org/10.1007/S13201-020-01300-5

    Article  Google Scholar 

  • Real, M. K. H., Khanam, N., Mia, M. Y., Nasreen, M., Real, M. K. H., Khanam, N., Mia, M. Y., & Nasreen, M. (2017). Assessment of water quality and microbial load of Dhaleshwari River Tangail. Bangladesh. Advances in Microbiology, 7(6), 523–533. https://doi.org/10.4236/AIM.2017.76041

    Article  CAS  Google Scholar 

  • Rima, R., Ryhan, A. A., Ahmed, S., Islam, R., Munshi, S. H., & Azam, S. (2020). Assessment of water quality indicators of Meghna River Kishoreganj, Bangladesh. Asian Journal of Environment & Ecology, 12(2), 29–37. https://doi.org/10.9734/AJEE/2020/V12I230156

    Article  Google Scholar 

  • Sajib, A. M., & Moniruzzaman, M. (2021). Driving forces of landuse and landcover changes in the north-eastern part of Dhaka Conurbation. The Dhaka University Journal of Earth and Environmental Sciences, 10(2), 53–66. https://doi.org/10.3329/dujees.v10i2.57515

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18), 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011

    Article  CAS  Google Scholar 

  • Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018

  • Sultana, M. S., & Dewan, A. (2021). A reflectance-based water quality index and its application to examine degradation of river water quality in a rapidly urbanising megacity. Environmental Advances, 5, 100097. https://doi.org/10.1016/J.ENVADV.2021.100097

  • Sultana, S., Karmaker, B., Saifullah, A. S. M., Galal Uddin, M., & Moniruzzaman, M. (2022). Environment-friendly clay coagulant aid for wastewater treatment. Applied Water Science, 12, 1–10.

    Article  CAS  Google Scholar 

  • Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2016). Development of river water quality indices—a review. Environmental Monitoring and Assessment, 188(1), 1–29. https://doi.org/10.1007/s10661-015-5050-0

    Article  Google Scholar 

  • Tahiru, A. A., Doke, D. A., & Baatuuwie, B. N. (2020). Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region. Ghana. Applied Water Science, 10(8), 1–14. https://doi.org/10.1007/S13201-020-01272-6

    Article  Google Scholar 

  • Talukdar, G., Sarma, A. K., & Bhattacharjya, R. K. (2022). Assessment of land use change in riverine ecosystem and utilizing it for socioeconomic benefit. Environmental Monitoring and Assessment, 194(11), 1–19. https://doi.org/10.1007/s10661-022-10495-w

    Article  Google Scholar 

  • Tania, A. H., Gazi, M. Y., & Mia, M. B. (2021). Evaluation of water quantity–quality, floodplain landuse, and land surface temperature (LST) of Turag River in Bangladesh: An integrated approach of geospatial, field, and laboratory analyses. SN Applied Sciences, 3(1), 1–18. https://doi.org/10.1007/S42452-020-04011-3

    Article  Google Scholar 

  • Tanimura, S., Kuroiwa, C., & Mizota, T. (2006). Proportional symbol map** in R. Journal of Statistical Software, 15, 1–7. https://doi.org/10.18637/jss.v015.i05

  • Tewabe, D., & Fentahun, T. (2020). Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin. Northwest Ethiopia. Cogent Environmental Science, 6(1), 1778998. https://doi.org/10.1080/23311843.2020.1778998

    Article  Google Scholar 

  • Tong, S. T. Y., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66, 377–393. https://doi.org/10.1006/jema.2002.0593

    Article  Google Scholar 

  • Uddin, Md. Galal., Moniruzzaman, Md. ., Quader, Mohammad Abdul, & Hasan, Md. Abu. (2018). Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundwater for Sustainable Development, 7, 220–231.

  • Uddin, M. J., & Jeong, Y. -K. (2021). Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon, 7(2), e06107. https://doi.org/10.1016/J.HELIYON.2021.E06107

  • Uddin, M. G., Moniruzzaman, M., Hoque, M. A. A., Hasan, M. A., & Khan, M. (2016). Seasonal variation of physicochemical properties of water in the Buriganga River, Bangladesh. World Applied Sciences Journal, 34(1), 24–34.

  • Uddin, M. G., Moniruzzaman, M., & Khan, M. (2017). Evaluation of groundwater quality using CCME water quality index in the Rooppur nuclear power plant area, Ishwardi, Pabna, Bangladesh. American Journal of Environmental Protection, 5(2), 33–43. https://doi.org/10.12691/ENV-5-2-2

  • Uddin, M. G., Nash, S., Diganta, M. T. M., Rahman, A., & Olbert, A. I. (2022b). Robust machine learning algorithms for predicting coast al water quality index. Journal of Environmental Management, 321, 115923. https://doi.org/10.1016/j.jenvman.115923

  • Uddin, M. G., Nash, S., Diganta, M. T. M., Rahman, A., & Olbert, A. I. (2022c). A comparison of geocomputational models for validating geospatial distribution of water quality index, in: Priyanka, H., Rahman, A., Basant agarwal, Binita Tiwari (Eds.), Computational Statistic al Methodologies and Modeling for Artificial Intelligence. CRC Press, Taylor & Francis Publisher, USA

  • Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. https://doi.org/10.1016/J.ECOLIND.2020.107218

  • Uddin, G., Nash, S., & Olbert, A. I. (2022e). Optimization of parameters in a water quality index model using principal component analys is, in: Proceedings of the 39th IAHR World Congress. International Association for Hydro-Environment Engineering and Research (IAH R), Spain, pp. 5739–5744. https://doi.org/10.3850/IAHR-39WC2521711920221326

  • Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2022a). A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Research, 219, 118532. https://doi.org/10.1016/j.watres.118532

  • Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023a). A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches. Water Research, 119422. https://doi.org/10.1016/j.watres.119422

  • Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023b). Performance analysis of the water quality index model for predicting water state using machine learning techniques. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2022.11.073

  • Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2022d). Development of a water quality index model-a comparative analysis of vari ous weighting methods. In Mediterranean Geosciences Union Annual Meeting (MedGU-21). Istanbul (pp. 1–6)

  • Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023c). Assessing optimization techniques for improving water quality model. Journ al of Cleaner Production, 385, 135671. https://doi.org/10.1016/j.jclepro.2022.135671

  • Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023d). A sophisticated model for rating water quality. Science of the Total Environment, 161614. https://doi.org/10.1016/j.scitotenv.2023.161614

  • Uddin, M. G., Olbert, A. I., & Nash, S. (2020a). Assessment of water quality using Water Quality Index (WQI) models and advanced geos tatistical technique. In Civil Engineering Research Association of Ireland (CERAI). Civil Engineering Research Association of Ireland (CERAI) (pp. 594–599). Cork Institute of Technology Cork.

  • Uddin, M. G., Olbert, A. I., & Nash, S. (2020b). Application of Water Quality Index Models to an Irish Estuary. In Civil Engineering Res earch Association of Ireland (CERAI). Civil Engineering Research Association of Ireland (CERAI) (pp. 576–581).

  • Ullah, K. A., Jiang, J., & Wang, P. (2018). Land use impacts on surface water quality by statistical approaches. Global Journal of Environmental Science and Management, 4(2), 231–250. https://doi.org/10.22034/GJESM.2018.04.02.010

  • UNDP. (2010). Pollution abatement strategies for rivers and wetlands in and around Dhaka City. Retrieved on 1 January 2022 from http://ext.bd.undp.org/CCED/bgdp/BGDPMaterials/ReviewDocuments/Pollutionabatementstrategiesforriverandwetland.pdf

  • UNESCO. (2021). The global water quality challenge & SDGs. International Initiative on Water Quality (IIWQ). Retrieved on 1 January 2022 from https://en.unesco.org/waterquality-iiwq/wq-challenge

  • Wang, X., & Zhang, F. (2018). Effects of land use/cover on surface water pollution based on remote sensing and 3D-EEM fluorescence data in the **ghe Oasis. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-31265-0

    Article  CAS  Google Scholar 

  • WHO. (2018). A global overview of national regulations and standards for drinking water quality. Retrieved on 1 January 2022 from https://apps.who.int/iris/handle/10665/272345

  • Wilson, C. O. (2015). Land use/land cover water quality nexus: Quantifying anthropogenic influences on surface water quality. Environmental Monitoring and Assessment, 187(7), 1–23. https://doi.org/10.1007/s10661-015-4666-4

    Article  CAS  Google Scholar 

  • Wilson, C., & Weng, Q. (2010). Assessing surface water quality and its relation with urban land cover changes in the Lake Calumet Area. Greater Chicago. Environmental Management, 45(5), 1096–1111. https://doi.org/10.1007/s00267-010-9482-6

    Article  Google Scholar 

  • Wu, J., & Lu, J. (2021). Spatial scale effects of landscape metrics on stream water quality and their seasonal changes. Water Research, 191, 116811.

  • **ao, R., Wang, G., Zhang, Q., & Zhang, Z. (2016). Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep25250

    Article  CAS  Google Scholar 

  • Yan, T., Shen, S. L., & Zhou, A. (2022). Indices and models of surface water quality assessment: Review and perspectives. Environmental Pollution, 119611. https://doi.org/10.1016/j.envpol.2022.119611

  • Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A., & He, L. (2020). Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of **n’anjiang River in Huangshan, China. International Journal of Environmental Research and Public Health, 17(8), 2942. https://doi.org/10.3390/IJERPH17082942

    Article  CAS  Google Scholar 

  • Zaki, Abdurrahman, Buchori, Imam, Sejati, Anang Wahyu, & Liu, Yan. (2022). An object-based image analysis in QGIS for image classification and assessment of coastal spatial planning. The Egyptian Journal of Remote Sensing and Space Science, 25(2), 349–359.

  • Zerin, L., Gani, M. A., & Khondker, M. (2017). Comparative water quality assessment of the river Buriganga near Dhaka metropolis. Bangladesh. Bangladesh Journal of Botany, 46(2), 589–598.

    Google Scholar 

  • Zhang, F., Chen, Y., Wang, W., Jim, C. Y., Zhang, Z., Tan, M. L., & Rahman, H. A. (2022). Impact of land-use/land-cover and landscape pattern on seasonal in-stream water quality in small watersheds. Journal of Cleaner Production, 357, 131907. https://doi.org/10.1016/j.jclepro.2022.131907

Download references

Acknowledgements

The authors would like to express their gratitude to Md. Mujahidul Islam, a former research student of the Department of Geography and Environment at Jagannath University in Dhaka, Bangladesh, for his assistance during field data gathering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Moniruzzaman.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to the publication of this article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gani, M., Sajib, A.M., Siddik, M. et al. Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques. Environ Monit Assess 195, 449 (2023). https://doi.org/10.1007/s10661-023-10989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10989-1

Keywords

Navigation