Log in

Effect of soil type and organic manure on adsorption–desorption of flubendiamide

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Laboratory study on adsorption–desorption of flubendiamide was conducted in two soil types, varying in their physical and chemical properties, by batch equilibrium method. After 4 h of equilibrium time, adsorption of flubendiamide on soil matrix exhibited moderately low rate of accumulation with 4.52 ± 0.21 % in red soil and low rate with 3.55 ± 0.21 % in black soil. After amending soils with organic manure, adsorption percentage increased to 6.42 ± 0.21 % in red soil and (4.18 ± 0.21 %) in black soil indicating that amendment significantly increased sorption. Variation in sorption affinities of the soils as indicated by distribution coefficient (K d) for sorption was in the range of 2.98–4.32, 4.91–6.64, 1.04–1.45 and 1.92–2.81 ml/g for red soil, organic manure-treated red soil, black soil and organic manure-treated black soil, respectively. Desorption was slightly slower than adsorption indicating a hysteresis effect having hysteresis coefficient ranges between 0.023 and 0.149 in two test soils. The adsorption data for the insecticide fitted well the Freundlich equation. Results revealed that adsorption–desorption was influenced by soil types and showed that the maximum sorption and minimum desorption of the insecticide was observed in soils with higher organic carbon and clay content. It can be inferred that crystal lattice of the clay soil plays a significant role in flubendiamide adsorption and desorption. Adsorption was lower at acidic pH and gradually increased towards alkaline pH. As this insecticide is poorly sorbed in the two Indian soil types, there may be a possibility of their leaching to lower soil profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey, G. W., & White, J. L. (1964). Review of adsorption and desorption of organic pesticides by soil colloids with implications concerning pesticide bioactivity. Journal of Agriculture & Food Chemistry, 12, 324–332.

    Article  CAS  Google Scholar 

  • Bailey, G. W., White, J. L., & Rothberg, T. (1968). Adsorption of organic herbicides by montmorillonite: role of pH and chemical characters of the adsorbate. Soil Science Society of America, Proceedings, 32, 222–234.

    Article  CAS  Google Scholar 

  • Beyer, L., Ahlsdorf, B., Sorge, C., Schulton, H. R., & Blume, H. P. (1996). Soil organic matter composition and pesticide bonding in sandy soils in relation to groundwater protection in north-west German lower plain. Biology and Fertility of Soils, 23, 266–272.

    Article  CAS  Google Scholar 

  • Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., & Clark, F. E. (Eds.) (1965). Methods of soil analysis, 2nd edn. In Agronomy monograph 9. Madison: Agronomy Society of America and Soil Science Society of America.

  • Blakemore, L.C., Searle, P.L., & Daly, B.K. (1987). Methods for chemical analysis of soils. NZ Soil Bureau Scientific Report, series 80. New Zealand: NZ DSIR, 103 p.

  • Cohen, S.Z., Creeger, S.M., Carsel, R.F., & Enfield, C.G. (1984). Potential pesticide contamination of groundwater from agricultural uses. In R.F. Krueger, & J.N. Seiber (Eds.), Treatment and disposal of pesticide wastes, ACS Symposium Series No. 259 (pp. 297–325). Washington, DC: American Chemical Society.

  • Cox, L., Koskinen, W. C., & Yen, P. Y. (1997). Sorption–desorption of imidacloprid and its metabolites in soils. Journal of Agricultural and Food Chemistry, 45, 1468–1472.

    Article  CAS  Google Scholar 

  • Das, S. K., & Mukherjee, I. (2011). Effect of light and pH on persistence of flubendiamide. Bulletin of Environmental Contamination and Toxicology, 87, 292–296.

    Article  CAS  Google Scholar 

  • Das, S. K., & Mukherjee, I. (2012). Effect of moisture and organic manure on persistence of flubendiamide in soil. Bulletin of Environmental Contamination and Toxicology, 88, 515–520.

    Article  CAS  Google Scholar 

  • Das, S. K., & Mukherjee, I. (2014). Influence of microbial community on degradation of flubendiamide in two Indian soils. Environmental Monitoring and Assessment, 186, 3213–3219.

    Article  CAS  Google Scholar 

  • Das, S. K., Mukherjee, I., & Das, S. K. (2012). Dissipation of flubendiamide in/on Okra [Abelmoschus esculenta (L.) Moench] Fruits. Bulletin of Environmental Contamination and Toxicology, 88, 381–384.

    Article  CAS  Google Scholar 

  • Das, S. K., Avasthe, R. K., Singh, R., & Babu, S. (2014). Biochar as carbon negative in carbon credit under changing climate. Current Science, 107, 1090–1091.

    Google Scholar 

  • Deng, J., Jiang, X., Hu, W., & Hu, L. (2010). Quantifying hysteresis of atrazine desorption from a sandy loam soil. Journal of Environmental Sciences, 22, 1923–1929.

    Article  CAS  Google Scholar 

  • Drori, Y., Aizenshtat, Z., & Chefetz, B. (2005). Sorption–desorption behavior of atrazine in soils irrigated with reclaimed wastewater. Soil Science Society of America Journal, 69, 1703–1710.

    Article  CAS  Google Scholar 

  • Ebbinghaus-Kintscher, U., Lummen, P., Raming, K., Masaki, T., & Yasokawa, N. (2007). Flubendiamide, the first insecticide with a novel mode of action on insect ryanodine receptors. Pf lanzenschutz-Nachrichten Bayer, 60, 117–140.

    CAS  Google Scholar 

  • Fernandes, M. C., Cox, L., Hermosin, M. C., & Cornejo, J. (2006). Organic amendments affecting sorption, leaching and dissipation of fungicides in soils. Pest Management Science, 62, 1207–1215.

    Article  CAS  Google Scholar 

  • Gajbhiye, V. T., & Gupta, S. (2001). Adsorption-desorption behavior of flufenacet in five different soils of India. Pest Management Science, 57, 633–639.

    Article  CAS  Google Scholar 

  • Gannon, T. W., Hixson, A. C., Weber, J. B., Shi, W., Yelverton, F. H., & Rufty, T. W. (2013). Sorption of simazine and S-metolachlor to soils from a chronosequence of turf grass systems. Weed Science, 61, 508–514.

    Article  CAS  Google Scholar 

  • Gustafson, D. I. (2002). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8, 339–357.

    Article  Google Scholar 

  • Hamaker, J. W., & Thompson, J. M. (1992). Adsorption. In C. A. I. Goring & J. W. Hamaker (Eds.), Organic chemical in the soil environment (pp. 49–144). New York: Marcel Dekker Inc.

    Google Scholar 

  • Helling, C. S., Kearney, P. C., & Alexander, M. (1971). Behavior of pesticides in soils. Advances in Agronomy, 23, 147–240.

    Article  CAS  Google Scholar 

  • Ismail, B. S., & Kalithasan, K. (2004). Adsorption, desorption and mobility of permethrin in Malaysian soils. Journal of Environmental Science and Health. Part. B, 39, 419–429.

    Article  CAS  Google Scholar 

  • Ismail, B. S., & Ooi, K. E. (2012). Sorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agro ecosystem in Malaysia. Journal of Environmental Biology, 33, 573–577.

    CAS  Google Scholar 

  • Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall.

    Google Scholar 

  • Jana, T. K., & Das, B. (1997). Sorption of carbaryl (1-Naphthyl N-methyl carbamate) by soil. Bulletin of Environmental Contamination and Toxicology, 59, 65–71.

    Article  CAS  Google Scholar 

  • Khoury, R., Geanchan, A., Corte, C. M., Cooper, J. F., & Bobe, A. (2003). Retention and degradation of metribuzin in sandy loam and clay soils of Lebanon. Weed Research, 43, 252–259.

    Article  CAS  Google Scholar 

  • Kumar, N., & Mukherjee, I. (2013). Effect of soil physicochemical properties on adsorption of tricyclazole. International Journal of Agriculture and Food Science Technology, 4, 391–396.

    Google Scholar 

  • Li, H., Sheng, G., Teppan, B. J., Johnston, C. T., & Boyd, S. A. (2003). Sorption and desorption of pesticides by clay minerals and humic acid-clay complexes. Soil Science Society America Journal, 67, 122–131.

    Article  CAS  Google Scholar 

  • Masaki, T., Yasokawa, N., Tohnishi, M., Motoba, K., & Hirooka, T. (2006). Flubendiamide: a novel Ca+2 channel modulator, reveals evidence for functional cooperation between Ca+2 pumps and Ca+2 release. Molecular Pharmacology, 69, 1733–1739.

    Article  CAS  Google Scholar 

  • Murphy, E. M., Zachara, J. M., Smith, S. C., & Phillips, J. L. (1992). The sorption of humic acids to mineral surfaces and their role in contaminant binding. Science of Total Environment, 117, 413–423.

    Article  Google Scholar 

  • Rhodes, R. C., Belasco, I. J., & Pease, H. L. (1970). Determination of mobility and sorption of agrochemicals on soils. Journal of Agricultural and Food Chemistry, 18, 524–527.

    Article  CAS  Google Scholar 

  • Singh, N., Kloeppel, H., & Klein, W. (2001). Sorption behavior of metolachlor, isoproturon and terbuthylazine in soils. Journal of Environmental Science and Health. Part. B, 36, 397–407.

    Article  CAS  Google Scholar 

  • Spark, K. M., & Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of Total Environment, 298, 147–161.

    Article  CAS  Google Scholar 

  • USEPA. (2008). Pesticide fact sheet, flubendiamide. Office of prevention, pesticides and toxic substances. http://www.epa.gov/opprd001/factsheet/flubendiamide.pdf. Accessed on 1st July 2010.

  • Wauchope, R. D., Yeh, S., Linders, J. B., Kloskowski, R., Tanaka, K., Rubin, B., Katayama, A., Kordel, W., Gerstl, Z., Lane, M., & Unsworth, J. B. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science, 58(5), 419–445.

    Article  CAS  Google Scholar 

  • Zhang, J., Yang, L., Wei, L., Du, X., Zhou, L., Jiang, L., Ding, Q., & Yang, H. (2012). Environmental impact of two organic amendments on sorption and mobility of propachlor in soils. Journal of Soils Sediments, 12, 1380–1388.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the head of the Division of Agricultural Chemicals, IARI, New Delhi, India, for providing the facilities to carry out this work (contribution no. 1066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irani Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Mukherjee, I. & Kumar, A. Effect of soil type and organic manure on adsorption–desorption of flubendiamide. Environ Monit Assess 187, 403 (2015). https://doi.org/10.1007/s10661-015-4623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4623-2

Keywords

Navigation