Log in

Application of multivariate optimization procedures for preconcentration and determination of Au(III) and Pt(IV) in aqueous samples with graphene oxide by X-ray fluorescence spectrometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A simple method was developed for the determination of Au(III) and Pt(IV) contents in aqueous samples after preconcentration. The method was based on the sorption of analytes as 2-amino-5-mercapto-1,3,4-thiadiazol complexes onto graphene oxide and subsequent direct determination by wavelength dispersive X-ray fluorescence (WDXRF). The optimization step was carried out using two-level full-factorial and Box–Behnken designs. The effects of four variables (pH, ligand mass, sonication time, and temperature) were studied by a full-factorial design to find significant variables and their interactions. Results of two-level full-factorial design for Au extraction showed that the factors: pH, ligand mass, temperature of sonication beside the interaction of pH–ligand mass, and interaction sonication temperature–ligand mass were significant. For Pt, the results revealed pH, ligand mass, sonication time, and interaction of pH–ligand mass were statistically significant. Box–Behnken matrix design was applied to determine the optimum level of significant parameters for extraction of two analytes simultaneously. The optimum values of the factors were pH 2.5, 0.9 mL ligand solution, 56 min sonication time and 15 °C temperature. The limits of detection (LOD) were found to be 8 ng mL−1 for Au and 6 ng mL−1 for Pt. The adsorption capacity for Au and Pt were 115 and 169 μg mg−1, respectively. The relative standard deviation (RSD) was lower than 1.4 % (n = 5), and the extraction percentage was more than 95 % for both elements. The method was validated by determination of Au and Pt in spiked water samples and certified reference standard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedi, H., Ebrahimzadeh, H., & Ghasemi, J. B. (2015). Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. Microchimica Acta, 182, 633–641.

    Article  CAS  Google Scholar 

  • Blount, C. W., Leyden, D. E., Thomas, T. L., & Guill, S. M. (1973). Application of chelating ion exchange resins for trace element analysis of geological samples using X-ray fluorescence. Analytical Chemistry, 45, 1045–1050.

    Article  CAS  Google Scholar 

  • Brum, D. M., Lima, C. F., Robaina, N. F., Fonseca, T. C. O., & Cassella, R. J. (2011). Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion. Spectrochimica Acta Part B, 66, 338–344.

    Article  CAS  Google Scholar 

  • Bykkam, S., Rao, K. V., Chakra, C. H. S., & Thunugunta, T. (2013). Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebseilla and Staphylococus. International Journal of Advanced Biotechnology Research, 4, 142–146.

    Google Scholar 

  • Carvalho, M., Domingues, M., Mantovano, J., & Filho, E. (1998). Uranium determination at ppb levels by X-ray fluorescence after its preconcentration on polyurethane foam. Spectrochimica Acta Part B, 53, 1945–1949.

    Article  Google Scholar 

  • Chang, Q., Song, S., Wang, Y., Li, J., & Ma, J. (2012). Application of graphene as a sorbent for preconcentration and determination of trace amounts of chromium (III) in water samples by flame atomic absorption spectrometry. Analytical Methods, 4, 1110–1116.

    Article  CAS  Google Scholar 

  • Ebrahimzadeh, H., Tavassoli, N., Amini, M. M., Fazaeli, Y., & Abedi, H. (2010). Determination of very low levels of gold and palladium in wastewater and soil samples by atomic absorption after preconcentration on modified MCM-48 and MCM-41 silica. Talanta, 81, 1183–1188.

    Article  CAS  Google Scholar 

  • Elci, L., Sahan, D., Basaran, A., & Soylak, M. (2007). Solid phase extraction of gold (III) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination. Environmental Monitoring and Assessment, 132, 331–338.

    Article  CAS  Google Scholar 

  • Ezzatpour Ghadim, E., Manouchehri, F., Soleimani, G., Hosseini, H., Kimiagar, S., & Nafisi, S. (2013). Adsorption properties of tetracycline onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. PloS One, 8, 1–9.

    Google Scholar 

  • Fan, L., Luo, C., Sun, M., & Qiu, H. (2012). Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. Journal of Materials Chemistry, 22, 24577–24583.

    Article  CAS  Google Scholar 

  • Ferreira, S. L. C., Queiroz, A. S., Fernandes, M. S., & dos Santos, H. C. (2002). Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B, 57, 1939–1950.

    Article  Google Scholar 

  • Ferreira, S. L. C., dos Santos, W. N. L., Bezerra, M. A., Lemos, V. A., & Bosque-Sendra, J. M. (2003). Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 375, 443–449.

    CAS  Google Scholar 

  • Fontàs, C., Marguí, E., Hidalgo, M., & Queralt, I. (2009). Improvement approaches for the determination of Cr(VI), Cd(II), Pd(II) and Pt(IV) contained in aqueous samples by conventional XRF instrumentation. X-Ray Spectrometry, 38, 9–17.

    Article  Google Scholar 

  • Ghasemi, J. B., Rofouei, M. K., & Amiri, N. (2014). Using chemometric methods for overlap correction of sodium–zinc spectral lines generated by wavelength dispersive X-ray fluorescence in mineral samples. X-Ray Spectrometry, 43, 131–137.

    Article  CAS  Google Scholar 

  • Ghasemi, J. B., Rofouei, M. K., & Amiri, N. (2015). Multivariate curve resolution alternating least squares in the quantitative determination of sulfur using overlapped S(Kα)–Mo(Lα) emission peaks by wavelength dispersive X-ray fluorescence spectrometry. X-Ray Spectrometry. doi:10.1002/xrs.2587.

    Google Scholar 

  • Gordeeva, V. P., Glazkova, S. V., Tsysin, G. I., Ivanov, V. M., & Zolotov, Yu. A. (2003). X-ray fluorescence determination of Au, Pd and Pt from chloride solutions after preconcentration on cellulose filters, 10th International Conference SIS’03 (pp. 73–74). Slovakia.

  • Hassan, J., Shamsipur, M., & Karbasi, M. H. (2011). Single granular activated carbon microextraction and graphite furnace atomic absorption spectrometry determination for trace amount of gold in aqueous and geological samples. Microchemical Journal, 99, 93–96.

    Article  CAS  Google Scholar 

  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339.

    Article  CAS  Google Scholar 

  • Jalali-Heravi, M., Parastar, H., & Ebrahimi-Najafabadi, H. (2009). Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. Journal of Chromatography A, 1216, 6088–6097.

    Article  CAS  Google Scholar 

  • Karthika, P., Rajalakshmi, N., & Dhathathreyan, K. S. (2012). Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanoscience Letters, 2, 59–66.

    Article  CAS  Google Scholar 

  • Khajeh, М., & Sanchooli, E. (2011). Magnetic nanoparticles as sorbent for preconcentration and determination of lead in fish and water samples. Journal of Applied Spectroscopy, 78, 441–447.

    Article  Google Scholar 

  • Liu, R., & Liang, P. (2007). Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples. Analytica Chimica Acta, 6 0 4, 114–118.

    Google Scholar 

  • Liu, Q., Shi, J. B., Zeng, L. X., Wang, T., Cai, Y. Q., & Jiang, G. B. (2011). Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. Journal of Chromatography A, 1218, 197–204.

    Article  CAS  Google Scholar 

  • Liu, L., Li, C., Bao, C., Jia, Q., **ao, P., Liu, X., & Zhang, Q. (2012a). Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta, 93, 350–357.

    Article  CAS  Google Scholar 

  • Liu, Q., Shi, J., & Jiang, G. (2012b). Application of graphene in analytical sample preparation. Trends in Analytical Chemistry, 37, 1–11.

    Article  Google Scholar 

  • Liu, L., Liu, S., Zhang, Q., Li, C., Bao, C., Liu, X., & **ao, P. (2013). Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. Journal of Chemical & Engineering Data, 58, 209–216.

    Article  CAS  Google Scholar 

  • Mladenova, E., Dakova, I., Karadjova, I., & Karadjov, M. (2012a). Column solid phase extraction and determination of ultra-trace Au, Pd and Pt in environmental and geological samples. Microchemical Journal, 101, 59–64.

    Article  CAS  Google Scholar 

  • Mladenova, E., Karadjova, I., & Tsalev, D. L. (2012b). Solid-phase extraction in the determination of gold, palladium, and platinum. Journal of Separation Science, 35, 1249–1265.

    Article  CAS  Google Scholar 

  • Moore, R. V. (1982). Dibenzylammonium and sodium dibenzyldithiocarbamates as precipitants for preconcentration of trace elements in water for analysis by energy dispersive x-ray fluorescence. Analytical Chemistry, 54, 895–897.

    Article  CAS  Google Scholar 

  • Saracoglu, S., Soylak, M., Kacar Peker, D. S., Elci, L., dos Santos, W. N. L., Lemos, V. A., & Ferreira, S. L. C. (2006). A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Analytica Chimica Acta, 575, 133–137.

    Article  CAS  Google Scholar 

  • Sereshti, H., Izadmanesh, Y., & Samadi, S. (2011). Optimized ultrasonic assisted extraction–dispersive liquid–liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. Journal of Chromatography A, 1218, 4593–4598.

    Article  CAS  Google Scholar 

  • Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B., & Wrzalik, R. (2013a). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions, 42, 5682–5689.

    Article  CAS  Google Scholar 

  • Sitko, R., Zawisza, B., & Malicka, E. (2013b). Graphene as a new sorbent in analytical chemistry. Trends in Analytical Chemistry, 51, 33–43.

    Article  CAS  Google Scholar 

  • Super-Q reference manual (2003). Version 3.0, The Netherland, Panalytical B.V.

  • Takahashi, A., Igarashi, S., Ueki, Y., & Yamaguchi, H. (2000). X-ray fluorescence analysis of trace metal ions following a preconcentration of metal-diethyldithiocarbamate complexes by homogeneous liquid-liquid extraction. Fresenius Journal of Analytical Chemistry, 368, 607–610.

    Article  CAS  Google Scholar 

  • Tu, Z., Lu, S., Chang, X., Li, Z., Hu, Z., Zhang, L., & Tian, H. (2011). Selective solid-phase extraction and separation of trace gold, palladium and platinum using activated carbon modified with ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate. Microchimica Acta, 173, 231–239.

    Article  CAS  Google Scholar 

  • Vaezzadeh, M., Shemirani, F., & Majidi, B. (2010). Microextraction technique based on ionic liquid for preconcentration and determination of palladium in food additive, sea water, tea and biological samples. Food and Chemical Toxicology, 48, 1455–1460.

    Article  CAS  Google Scholar 

  • Van Grieken, R. (1982). Preconcentration methods for the analysis of water by X-ray spectrometric techniques. Analytica Chimica Acta, 143, 3–34.

    Article  Google Scholar 

  • Wang, Y., Gao, S., Zang, X., Li, J., & Ma, J. (2012a). Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Analytica Chimica Acta, 716, 112–118.

    Article  CAS  Google Scholar 

  • Wang, Y. K., Gao, S. T., Ma, J. J., & Li, J. C. (2012b). Application of graphene as a sorbent for simultaneous preconcentration and determination of trace amounts of cobalt and nickel in environmental water and vegetable samples. Journal of the Chinese Chemical Society, 59, 1468–1477.

    Article  CAS  Google Scholar 

  • **ong, Y., Adhikari, C. R., Kawakita, H., Ohto, K., Inoue, K., & Harada, H. (2009). Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresource Technology, 100, 4083–4089.

    Article  CAS  Google Scholar 

  • Yamini, Y., Amiri, N., & Karimi, M. (2009). Determination of trace elements in natural water using X-ray fluorescence spectrometry after preconcentrationwith powdered silica gel. X-Ray Spectrometry, 38, 474–478.

    Article  CAS  Google Scholar 

  • Yang, S. T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., Liu, Y., & Cao, A. (2010). Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science, 351, 122–127.

    Article  CAS  Google Scholar 

  • Yoon, H., Park, C., Yoon, C., Hong, J., Kim, N., & Han, K. (2004). Quantitative analysis of platinum group metals using X-ray fluorescence spectrometry, SME annual meeting and Exhibit February 23– 25 (pp. 1–6). Denver, Colorado.

  • Zawisza, B., Skorek, R., Stankiewicz, G., & Sitko, R. (2012). Carbon nanotubes as a solid sorbent for the preconcentration of Cr, Mn, Fe, Co, Ni, Cu, Zn and Pb prior to wavelength-dispersive X-ray fluorescence spectrometry. Talanta, 99, 918–923.

    Article  CAS  Google Scholar 

  • Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y., & Wang, X. (2011). Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions, 40, 10945–10952.

    Article  CAS  Google Scholar 

  • Zhao, G., Wen, T., Yang, X., Yang, S., Liao, J., Hu, J., Shao, D., & Wang, X. (2012). Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions, 41, 6182–6188.

    Article  CAS  Google Scholar 

  • Zolgharnein, J., Shahmoradi, A., & Ghasemi, J. B. (2013). Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb(II) adsorption onto Robinia tree leaves. Journal of Chemometrics, 27, 12–20.

    Article  CAS  Google Scholar 

  • Zougagh, M., Garcia de Torres, A., Vereda Alonso, E., & Cano Pavón, J. M. (2004). Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn. Talanta, 62, 503–510.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the Geological Survey of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan B. Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rofouei, M.K., Amiri, N. & Ghasemi, J.B. Application of multivariate optimization procedures for preconcentration and determination of Au(III) and Pt(IV) in aqueous samples with graphene oxide by X-ray fluorescence spectrometry. Environ Monit Assess 187, 149 (2015). https://doi.org/10.1007/s10661-015-4378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4378-9

Keywords

Navigation