Log in

Sustainability of winter tourism in a changing climate over Kashmir Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ageta, Y., & Kadota, T. (1992). Predictions of changes of glacier mass balance in the Nepal Himalaya and Tibetan Plateau: a case study of air temperature increase for three glaciers. Annals of Glaciology, 16, 89–94.

    Google Scholar 

  • Akhtar, M., Ahmad, N., & Booi, M. J. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355, 148–163.

    Article  Google Scholar 

  • Archer, D. R., & Fowler, H. J. (2008). Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. Journal of Hydrology, 361(1), 10–23.

    Article  Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS IC PAN Stero Data. International Journal of Remote Sensing, 28(2), 437–442.

    Article  Google Scholar 

  • Baker, D., Escher-Vetter, H., Moser, H., Oerter, H., & Reinwarth, O. (1982). Glacier discharge model based on results from field studies of energy balance, water storage and flow. Hydrological Aspects of Alpine and High Mountain Areas IAHS Publication, 138, 103–112.

    Google Scholar 

  • Barnett, T. P., Pierce, D. W., Achutarao, K. M., Gleckler, P. J., Santer, B. D., Gregory, J. M., et al. (2005). Penetration of human induced warming into the world’s oceans. Science, 309(5732), 284–287.

    Article  CAS  Google Scholar 

  • Bayr, K. J., Hall, D. K., & Kovalick, W. M. (1994). Observation on glaciers in the Eastern Austria Alps using satellite data. International Journal of Remote Sensing, 15(9), 1733–1752.

    Article  Google Scholar 

  • Beniston, M., Haeberli, W. & Schmid, E. (1998). Wie empfindlich reagieren Gebirgsregionen auf klimatische Veränderungen. Warnsignal Klima, Wissenschaftliche Fakten. Hamburg.

  • Bhatt, D. K. & Chatterji, A. K. (1976). An appraisal of field observations on the geology of Plio-Pleistocene Karewa Group and more recent Quaternary deposits of Kashmir Valley. Proceeding, 6th Indian Colloquium on micropaleontology and stratigraphy, B. H. U., Varanasi, 11-22

  • Bhatt, D. K. (1975). On the Quaternary geology of Kashmir Valley with special reference to stratigraphy and sedimentation. Geological Survey of India, Miscellaneous Publication, 24, 188–203.

    Google Scholar 

  • Bhatt, D. K. (1976). Stratigraphical status of the Karewa Group of Kashmir Valley, India. Himalayan Geology, 8, 769–783.

    Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long term trends in maximum, minimum and mean annual air temperature across the Northwestern Himalaya during twentieth century. Climate Change, 85, 159–177.

    Article  Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2009). Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. International Journal of Climatology, 30(4), 535–548.

    Google Scholar 

  • Bohm, R. (1986). Der Sonnblick (p. 222). Vienna: Oesterreichischer Bundesverlag.

    Google Scholar 

  • Bourdeau, P. (2009). Mountain tourism in a climate of change. Alpine space—man & environment, 7.

  • Bradley, R. S. (1999). Paleoclimatology: reconstructing climates of the Quaternary (p. 610). Sand Diego: Academic Press.

    Google Scholar 

  • Breiling, M., & Charamza, P. (1999). The impact of global warming on winter tourism and skiing: a regionalised model for Austrian snow conditions. Regional Environmental Change, 1(1), 4–14.

    Article  Google Scholar 

  • Burki, R. (2000). Climate change and adaptation processes in winter tourism. The Geographical Society Ostschweizerische NF, 6, St. Gallen.

  • Castruccio, P.A., Loats, H.L., Lloyd, D. & Newman, P.A.B.. (1980). Cost/benefit analysis in the operational application of satellite snowcover operations. In: A. Rango, R. Peterson (Eds.) Operational Applications of Satellite Snowcover Operations (pp. 239–254). NASA Conference Publication 2116, NASA Scientific and Technical Information Office

  • Conway, H., & Benedict, R. (1994). Infiltration of water into snow. Water Resources Research, 30(3), 641–649.

    Article  Google Scholar 

  • Dahe, Q., Shiyin, L., & Peiji, L. (2006). Snow cover distribution, variability, and response to climate change in western China. Journal of Climate, 19(9), 1820–1833.

    Article  Google Scholar 

  • Dar, R. A., & Romshoo, S. A. (2012). Estimating daily stream flow in the Glacierized Mountainous Kashmir Himalayan Basin. Journal of Research and Development, 12, 117–134.

    Google Scholar 

  • Dar, R. A., Chandra, R., & Romshoo, S. A. (2013). Morphotectonic and lithostratigraphic analysis of intermontane Karewa Basin of Kashmir Himalayas, India. Journal of Mountain Science, 10, 1–15.

    Article  Google Scholar 

  • Denton, G. H., & Hughas, T. J. (1981). The last Great Ice Sheets. New York: Wiley.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2004). Recession and morphogeometrical changes of Dokriani glacier (1962–1995) Garhwal Himalaya, India. Current Science, 86(5), 692–696.

    Google Scholar 

  • Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 28, 9–22.

    Article  Google Scholar 

  • Fowler, H. J., & Archer, D. R. (2006). Conflicting signals of climatic change in the Upper Indus Basin. Journal of Climate, 19(17), 4276–4293.

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for map** global snow cover using moderate resolution imaging spectroradiometer (MODIS) data. Remote Sensing of Environment, 54, 127–140.

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., & Bayr, K. J. (2002). MODIS snowcover products. Remote Sensing of Environment, 83, 181–194.

    Article  Google Scholar 

  • Hamlet, A. F., Huppert, D., & Lettenmaier, D. P. (2002). Economic value of long-lead streamflow forecasts for Columbia River hydropower. ASCE Journal of Water Resource Planning and Management, 128, 91–101.

    Article  Google Scholar 

  • Hasnain, S. I. (2002). Himalayan glaciers meltdown: impact on South Asian Rivers. International Association of Hydrological Sciences, Publication, 274, 417–423.

    Google Scholar 

  • Houghton, R. A., & Woodwell, G. M. (1989). Global climate change. Scientific American, 260(4), 36–40.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: the physical science basis. Agenda, 6(07).

  • Jager, J., & Ferguson, H. L. (1991). Cliamte change: science, impacts and policy (Proceedings of the second World Climate Conference, Geneva, Switzerland). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jeelani, G., Feddema, J.J., Veen, C.J. & Stearns, L. (2012). Role of snow and glacier melt in controlling river hydrology in Liddar watershed (Western Himalaya) under current and future climate. Water Resources Research. DOI 10.1029/2011WR011590

  • Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective (No. Ed. 2). Prentice-Hall Inc.

  • Jian**, Y., Yongjian, D., Shiyin, L., & Feng, L. J. (2007). Variations of snow cover in the source regions of the Yangtze and Yellow Rivers in China between 1960 and 1999. Journal of Glaciology, 53(182), 420–426.

    Article  Google Scholar 

  • Kaul, M.K. (1999). Inventory of Himalayan glaciers. Special Publication 34, Geological Survey of India, Calcutta, 165 pp

  • Koenig, U., & Abegg, B. (1997). Impacts of climate change on winter tourism in the Swiss Alps. Journal of Sustainable Tourism, 5(1), 46–58.

    Article  Google Scholar 

  • Koike, T., Seko, K., **anzhang, C., Tadono, T., Tamagawa, K., Igarashi, H., et al. (1994). Monitoring ground surface condition on Tibetan Plateau by using satellite remote sensing. Bulletin of Glacier Research, 12, 95–104.

    Google Scholar 

  • Konig, M., Winther, J. G., & Isaksson, E. (2001). Measuring snow and glacier ice properties from satellite. Reviews of Geophysics, 39(1), 1–27.

    Article  Google Scholar 

  • Kulkarni, A., Patwardhan, S., Kumar, K. K., Ashok, K., & Krishnan, R. (2013). Projected climate change in the Hindu Kush–Himalayan region by using the high-resolution regional climate model PRECIS. Mountain Research and Development, 33(2), 142–151.

    Google Scholar 

  • Kulkarni, A. V. (2007). Effect of global warming on the Himalayan cryosphere. Jalvigyan Sammeksha, 22, 93–108.

    Google Scholar 

  • Kulkarni, A. V., Randhawa, S. S., Rathore, B. P., Bahuguna, I. M., & Sood, R. K. (2002). Snow and glacier melt runoff model to estimate hydropower potential. Journal Indian Society of Remote Sensing, 30(4), 221–228.

    Article  Google Scholar 

  • Kumar, V., & Jain, S. K. (2010). Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quaternary International, 212(1), 64–69.

    Article  Google Scholar 

  • Kumar, V., Rao, Y.S., Venkataraman, G., Sarwade R.N. & Snehmani (2006). Analysis of Aqua AMSR-E derived snow water equivalent over Himalayan snow covered regions. Proc. IGARSS, 702-705, Denver, CO, USA.

  • Lau, W. K., Kim, M. K., Kim, K. M., & Lee, W. S. (2010). Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environmental Research Letters, 5(2), 025204.

    Article  Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation (No. Ed. 5). Lucknow: John Wiley & Sons Ltd.

  • Lucas, R. M., & Harrison, A. R. (1990). Snow observation by satellite: a review. Remote Sensing Reviews, 4(2), 285–348.

    Google Scholar 

  • Marsh, P., & Pomeroy, J. W. (1996). Melt water fluxes at an arctic forest-tundra site. Hydrological Processes, 10, 1383–1400.

    Article  Google Scholar 

  • Marsh, P., & Woo, M. K. (1984). Wetting front advance and freezing of meltwater within a snow cover: 1 Observations in Canadian Arctic. Water Resources Research, 20(12), 1835–1864.

    Google Scholar 

  • Marsh, P. (1999). Snow cover formation and melt: recent advances and future prospects. Hydrological Processes, 13, 2117–2134.

    Article  Google Scholar 

  • Mayewski, P. A., & Jeschke, P. A. (1979). Himalayan and Trans-Himalayan glacier fluctuations since AD 1812. Arctic and Alpine Research, 267–287.

  • Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., & Schloss, A. L. (1993). Global climate change and terrestrial net primary production. Nature, 363(6426), 234–240.

    Article  CAS  Google Scholar 

  • Muslim, M. (2012). Predicting climate change over Kashmir and assessing the impact of climate change on Paddy crop. Ph.D. thesis submitted to Sheri Kashmir University of Agricultural Sciences and Technology, Shalimar Srinagar, India. 231 pp

  • Nagler, T., & Rott, H. (2000). Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 754–765.

    Article  Google Scholar 

  • Negi, H. S., Thakur, N. K., Kumar, R., & Kumar, M. (2009). Monitoring and evaluation of seasonal snow cover in Kashmir Valley using remote sensing, GIS and ancillary data. Journal of Earth System Sciences, 118(6), 711–720.

    Article  Google Scholar 

  • Nyaupane, G. P., & Chhetri, N. (2009). Vulnerability to climate change of nature-based tourism in the Nepalese Himalayas. Tourism Geographies, 11(1), 95–119.

    Article  Google Scholar 

  • Price, R.J. (1973). Glacial and fluvioglacial landforms (Vol. 5). In: K. M. Clayton (Ed.). Edinburgh: Oliver and Boyd

  • Rabatel, A., Dedieu, J. P., & Vincent, C. (2005). Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers, 1994–2002. Journal of Glaciology, 51(175), 539–546.

    Article  Google Scholar 

  • Rango, A., & Martinec, J. (1995). Revisiting the degree day method for snowmelt computations. JAWRA Journal of the American Water Resources, 31(4), 657–669.

    Article  Google Scholar 

  • Rango, A. (1996). Spaceborne remote sensing for snow hydrology applications. Hydrological Sciences Journal, 41(4), 477–494.

    Article  CAS  Google Scholar 

  • Rashid, I. & Romshoo, S. A. (2012). Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas. Environmental Monitoring and Assessment, 1–15. doi. 10.1007/s10661-012-2898-0

  • Rashid, I., Romshoo, S. A., Muslim, M., & Malik, A. H. (2010). Landscape level vegetation characterization of Lidder valley using geoinformatics. Journal of Himalayan Ecology and Sustainable Development, 6, 11–24.

    Google Scholar 

  • Romshoo, S. A., & Rashid, I. (2010). Potential and constraints of geospatial data for precise assessment of the impacts of climate change at landscape level. International Journal of Geomatics and Geosciences, 1(3), 386–405.

    Google Scholar 

  • Romshoo, S.A. & Rashid, I. (2012). Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arabian Journal of Geosciences. doi: 10.1007/s12517-012-0761-9

  • Ruddiman, W. F. (2001). Earth’s climate, past and future (p. 465). New York: Freeman.

    Google Scholar 

  • Ruddiman, W. F. (2005). How did humans first alter global climate? Scientific American, 292(3), 34–41.

    Article  Google Scholar 

  • Salomonson, V. V., & Appel, I. (2006). Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1747–1756.

    Article  Google Scholar 

  • Saraf, A. K. (1999). Passive microwave data for snow-depth and snow-extent estimations in the Himalayan Mountains. International Journal of Remote Sensing, 20(1), 83–95.

    Article  Google Scholar 

  • Schneider, S.H. (1990). Global warming: are we entering the greenhouse century? 1st ed. New York: Vintage Books.

  • Schoner, W., Auer, I., & Bohm, R. (2000). Climate variability and glacier reaction in the Austrian eastern Alps. Annals of Glaciology, 31, 31–38.

    Article  Google Scholar 

  • Scott, D., McBoyle, G., & Mills, B. (2003). Climate change and the skiing industry in southern Ontario (Canada): exploring the importance of snowmaking as a technical adaptation. Climate Research, 23(2), 171–181.

    Article  Google Scholar 

  • Scott, D., McBoyle, G., Minogue, A., & Mills, B. (2006). Climate change and the sustainability of ski-based tourism in eastern North America: a reassessment. Journal of Sustainable Tourism, 14(4), 376–398.

    Article  Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971-94. Journal of Climate, 12(9), 2775–2786.

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One, 7(5), e36741.

    Article  CAS  Google Scholar 

  • Singh, P., & Bengtsson, L. (2005). Impact of warmer climate on melt and evaporation for the rain fed, snow fed and glaciered basins in the Himalayan region. Journal of Hydrology, 300, 140–154.

    Article  Google Scholar 

  • Singh, P., & Kumar, N. (1997). Effect of orography on precipitation in the Western Himalayan region. Journal of Hydrology, 199, 183–206.

    Article  Google Scholar 

  • Singh, P., Kumar, N., & Arora, M. (2000). Degree day factors for snow and ice for Dokriani Glacier Garhwal Himalayas. Journal of Hydrology, 235(1), 1–11.

    Article  Google Scholar 

  • Smith, J. A., Seltzer, G. O., Farber, D. I., Rodbell, D. T., & Finkel, R. C. (2005). Early local last glacial maximum in the tropical Andes. Science, 308, 678–681.

    Article  CAS  Google Scholar 

  • Surugiu, C., Surugiu, M. R., Frent, C., & Breda, Z. (2011). Effects of climate change on Romanian mountain tourism: are they positive or mostly negative? European Journal of Tourism, Hospitality and Recreation, 2(1), 42–71.

    Google Scholar 

  • Thakur, V. C. & Rawat, B. S. (1992). Geological map of the Western Himalaya. Published under the authority of the Surveyor General of India. Printing Group of Survey of India, 101 (HLO).

  • Tseng, P. H., Illangasekare, T. H., & Meier, M. F. (1994). Modeling of snow melting and uniform wetting front migration in a layered subfreezing snowpack. Water Resources Research, 30(8), 2363–2376.

    Article  Google Scholar 

  • Waldner, P. A., Schneebeli, M., Schultze‐Zimmermann, U., & Fluhler, H. (2004). Effect of snow structure on water flow and solute transport. Hydrological Processes, 18(7), 1271–1290.

    Article  Google Scholar 

  • Whetton, P. H., Haylock, M. R., & Galloway, R. (1996). Climate change and the snow-cover duration in Australian Alps. Climate Change, 32, 447–479.

    Article  Google Scholar 

  • Yao, H., & Georgakakos, A. (2001). Assessment of Folsom Lake response to historical and potential future climate scenarios. 2: reservoir management. Journal of Hydrology, 249, 176–196.

    Article  Google Scholar 

  • Yeh, W. W. G., Becker, L., & Zettlemoyer, R. (1982). Worth of inflow forecast for reservoir operation. Journal of Water Resource Planning and Management, 108, 257–269.

    Google Scholar 

Download references

Acknowledgements

The research work was conducted as part of the Ministry of Earth Sciences, Government of India sponsored national project titled “Assessing the Climate Change Impacts on Hydrology of Jhelum Basin” and the financial assistance received from the Ministry under the project to accomplish this research is thankfully acknowledged. The authors express gratitude to the anonymous reviewers for their valuable comments and suggestions on the earlier version of the manuscript that greatly improved the content and structure of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Rashid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dar, R.A., Rashid, I., Romshoo, S.A. et al. Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environ Monit Assess 186, 2549–2562 (2014). https://doi.org/10.1007/s10661-013-3559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3559-7

Keywords

Navigation